

LETTER OF TRANSMITTAL

From: Bruce Yare 575 Maryville Centre Drive St. Louis, MO 63141 (314) 674-4922 FAX (314) 674-8957

			Date:	6/6/03
Kevin Turner				Sauget Area 1
			Dead Cre	ek Final Remedy
The follow	wing items are:			
X Enc	losed	Requested	Sent Sep	parately Via:
No. of Copies			escription	
1	Dead Creek Fin	al Remedy Engin	eeri ng Evalua	ation/Cost Analysis
Response to Comments and Proposed Response		se Actions		
· 				
The above	e items are submitt	sed:		
At y	our request	For your	rev iew	For your signature
For	your files	For your a	ction	X your information
Comment	ts:			
				By: Bruce Yare

EPA Region 5 Records Ctr.

Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 Tel: 314-674-1000

June 6, 2003

Mr. Nabil S. Favoumi U. S. Environmental Protection Agency - Region 5 Superfund Division 77 West Jackson Boulevard (SR-6J) Chicago, Illinois 60604-3590

Re: Response to Comments and Proposed Response Actions Dead Creek Final Remedy Engineering Evaluation/Cost Analysis Sauget Area 1, Sauget and Cahokia, Illinois

Dear Mr. Favoumi:

Attached are responses to comments on the Dead Creek Final Remedy Engineering Evaluation/Cost Analysis for Sauget Area 1, Sauget and Cahokia, Illinois. comments were in an e-mail message dated March 18, 2003 and were discussed during a meeting held at the Solutia W. G. Krummrich Plant on April 29, 2003. At that meeting, it was agreed that the bulk of the comments were directed at one of the following three areas: 1) the scope of the remaining removal actions; 2) the potential for constituents of concern in the creek bottom soils to leach to the groundwater; and 3) the potential for mercury in the creek bottom soils to bioaccumulate in fish at concentrations of concern.

Rather than responding to each of the comments individually (as has been our past practice), it was agreed that it would be more appropriate for Solutia to present proposed response actions to complete the removal action, as well as to address the Agencies' concerns about the long term issues of leaching to groundwater and mercury bioaccumulation. The attached document presents these response actions.

Please review these proposals and let us know if they adequately address your needs.

Sincerely.

Solutia Inc.

Gary W. Vandiver Byster Ph. **
Project Coordinator

Kevin Turner USEPA cc: Sandra Bron - IEPA Michael Henry - IDNR Mike Coffey - USF&W Tim Gouger - USACE Steven Schmidt - Exxon Mobil

Bill Stone - Environ

Richard Ricci - Lowenstein Sandler Joseph M. Grana - Cerro Linda Tape - Husch & Eppenberger Steven Smith - Solutia Richard Williams - Solutia Bruce Yare - Solutia

1.0 EXECUTIVE SUMMARY

Background - On June 28, 1999, the United States Environmental Protection Agency (USEPA) issued a Unilateral Administrative Order to Monsanto Company and Solutia Inc. (Docket No. V-W-99-C-554) pursuant to Section 106(a) of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 as amended, 42 U.S.C. Section 9606(a), which was modified on May 31, 2000 and amended on August 29, 2001. The Order required performance of a number of response activities at Sauget Area 1 Creek Segments B, C, D, E and F, Site M and the lift station sump at Prairie du Pont Creek, including sediment removal and post-removal sampling of creek bottom soil. Sediment removal was completed in February 2002 when the last of 46,000 cubic yards of sediments from Creek Segments B, C, D and E and F, Site M and the lift station sump were transferred to the RCRA/TSCA-compliant, on-site containment cell.

Post-removal creek bottom soil sampling was started in October 2001 and completed in February 2002. Sample analysis and data validation were completed in May 2002. Validated data were used to prepare an Engineering Evaluation/Cost Analysis (EE/CA), a Human Health Risk Assessment (HHRA) and an Ecological Risk Assessment (ERA) for creek bottom soil in Creek Segments B, C, D, E and F and bottom soils in Site M. All three of these reports were submitted to USEPA on June 21, 2002. On August 7, 2002, USEPA commented on the Ecological Risk Assessment. USEPA's comments on the Engineering Evaluation/Cost Assessment were provided on September 26, 2002. Solutia submitted a "Response to Comments on Dead Creek Final Remedy Engineering Evaluation/Cost Analysis, Sauget Area 1, Sauget and Cahokia, Illinois, Response to Agency Comments on Ecological Risk Assessment" to USEPA on November 12, 2002. USEPA responded to the Response to Comments documents on March 19, 2003 and met with Solutia on April 29, 2003 to discuss its responses and identify an appropriate course of action.

Human Health Risk Assessment - Based on the results of the Dead Creek Final Remedy Human Health Risk Assessment, Solutia believes that no further action is necessary to protect public health. Access to Dead Creek is generally uncontrolled except for Creek Segment B, which is secured with a fence. Therefore, two exposure scenarios were evaluated in the HHRA: 1) a recreational receptor (i.e., teenager) exposed to COPCs in the creek bottom through wading or swimming and 2) a construction worker exposed to soil during excavation activities in the creek channel. Potential carcinogenic risks for a recreational teenager exposed to creek bottom soils in Creek Segments B, D, E and F and pond bottom soils in Site M are within the target risk range of 1E-6 to 1E-4 and the Hazard Indices are less than 1.0.

Summary of Recreational Tee	ary of Recreational Teenager Human Health Risks for Exposure to Dead Creek Bottom Soils		
	Potential Risk	Hazard Index	
June 6, 2003	DRAFT	Page 1 - 1	

File DC060503

	RME	MLE	<u>RME</u>	MLE
CS-B	1.95E-06	6.61E-07	2.77E-02	1.25E-02
CS-D	7.30E-07	7.02E-08	3.58E-02	2.91E-03
CS-E	1.69E-07	3.77E-08	9.78E-03	1.69E-03
CS-F	1.40E-07	3.29E-08	1.84E-03	4.18E-04
Site M	2.23E-05	2.32E-06	2.19E-01	2.68E-02

Potential carcinogenic risks for a construction worker exposed to creek bottom soils in Creek Segments B, D, E and F and pond bottom soils in Site M are within the target risk range of 1E-6 to 1E-4 and Hazard Indices for each segment are less than 1.0.

Summary of Construction Worker Human Health Risks for Exposure to Dead Creek Bottom Soils

	Potent	Potential Risk		Hazard Index	
	<u>RME</u>	MLE	RME	MLE	
CS-B	2.56E-07	9.78E-08	3.67E-02	2.17E-02	
CS-D	7.89E-08	9.17E-09	4.74E-02	4.46E-03	
CS-E	1.78E-08	4.94E-09	1.14E-02	2.48E-03	
CS-F	1.40E-08	4.16E-09	1.98E-03	5.71E-04	
Site M	4.00E-06	3.62E-07	4.58E-01	4.27E-02	

No constituents of concern were identified in Creek Segment C; all constituents present in CS-C creek bottom soils were screened out during the COPC identification process.

Ecological Risk Assessment - Potential adverse ecological impacts to fish were identified in the Dead Creek Final Remedy Ecological Risk Assessment, as revised in the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment, for the following constituents and locations in Dead Creek:

Summary of Potential Adverse Ecological Impacts from From Exposure to Dead Creek Bottom Soils

Creek Segment	Constituent	Transect
Creek Segment B	Total PAHs	T0, T3, T12 and T16
	Total PCBs	T0, T1, T3, T5, T6, T8 and T17
	Mercury	T0, T1, T2, T3, T6, T9, T11, T12 and T17
	Zinc	T0, T4, T8, T11 and T12
Creek Segment C	Mercury	T6
Creek Segment D	Total PCBs	Т6
•	Dioxin	Т6
	Zinc	T1 and T2
Creek Segment E	Mercury	T2, T6, T8, T9, T10, T11, T12, T13, T14, T15, T16 and T17
Creek Segment F	Mercury	T3, T5, T9 and T14
3	Zinc	T5

Ecological risk assessment results are summarized in Appendix A.

Page 1 - 3

Additional Work - Based on results of the Dead Creek Final Remedy EE/CA, HHRA and ERA, revisions of these documents in response to Agency comments and discussions with the Agency on April 29, 2003, Solutia believes that additional response actions, site investigations and performance monitoring are needed to protect the environment from residual constituent concentrations in Dead Creek bottom soils. Solutia proposes, subject to the concurrence by USEPA, to undertake additional removal actions, perform additional site investigations and institute performance monitoring plans, as summarized described below, under the provisions of the existing Time-Critical Sediment Removal Action UAO:

Response Actions

Creek Segment B – Install an armored, impermeable liner with the following section throughout the
entire length of Creek Segment B as required by the Dead Creek Time Critical Sediment Removal
Action UAO.

Armored Channel Liner Section

Тор	Riprap	3 to 6-Inch Crushed Limestone
-	Protective Layer	Dense Grade Bedding Material
	Geotextile	Non-Woven Cushion Layer
	Membrane Liner	60 mil HDPE
Bottom	Geotextile	Non-Woven Cushion Layer

- Creek Segment D Transect T6 Excavate 5,930 cubic yards of creek bottom soil with PCB and Dioxin concentrations greater than site-specific, ecological risk-based concentrations and transfer this material to the on-site containment cell:
- Creek Segment F Transect T5 Excavate 11,850 cubic yards of creek bottom soil with Zinc concentrations greater than the site-specific, ecological risk-based concentrations and transfer this material to the on-site containment cell;

Site Investigations

Potential Soil to Groundwater Leaching — Collect soil and groundwater samples at the three
locations in each creek segment with the highest predicted potential for cadmium leaching. Analyze
each soil sample for Total and TCLP-Extractable Cadmium and each groundwater sample for Total
and Dissolved Cadmium to determine if residual cadmium concentrations are leaching from creek
bottom soils to groundwater.

Performance Monitoring

- Fish Tissue Ten fish tissue composite samples will be collected annually from Creek Segment F to determine if: Mercury is bioaccumulating in fish tissue; concentration trends of this bioaccumulative constituent are upward, downward or stable and whole body fish tissue concentrations exceed threshold toxicity values.
- Storm Water Storm water samples will be collected quarterly for three years, semiannually for two years and annually thereafter. Samples will be collected at the outlets of Creek Segments B, C, D, E and F and analyzed for SVOCs, Pesticides, PCBs, Cadmium, Copper, Lead, Nickel and Zinc to determine if residual constituent concentrations in creek bottom soils are being transported downstream during storm conditions. Concentration trends will be monitored over time, organic constituent concentrations will be compared to PECs and inorganic constituent concentrations will be

compared to ten times PECs to determine if unacceptable concentrations of creek bottom soils are being transported via the surface water pathway.

• Groundwater – Groundwater samples will be collected quarterly for three years, semiannually for two years and annually thereafter. Samples will be collected from five monitoring wells located in Creek Segments B, C, D, E and F, one in each creek segment. Monitoring wells, which will be located on the center line of the Dead Creek channel, will have ten foot long screens located from 10 to 20 ft. below the surface of adjacent flood plain. Screens placed at this depth will cover the expected range of groundwater levels, which are normally within 10 to 15 feet of ground surface (bgs). Under dry conditions, depth to groundwater can be as deep as 20 ft. below ground surface. Samples from each well will be analyzed for Cadmium to determine if residual cadmium is leaching from creek bottom soils.

Performance monitoring results will be evaluated at the end of five years to determine whether or not performance monitoring needs to continue. If monitored constituent concentrations are steady state, decreasing or below criteria, monitoring will be discontinued.

Rationale, objectives and detailed description of work to be performed for each of these proposed removal actions, site investigations and performance monitoring plans are included in the following sections of this proposal:

Section 2.0 Removal Actions
 Section 3.0 Site Investigations

Section 4.0 Performance Monitoring

2.1 CREEK SEGMENT B RESPONSE ACTION

2.1.1 Basis for Additional Response Action

Additional response action is considered appropriate in Creek Segment B to isolate or remove creek bottom soils that create potential adverse ecological impacts as identified by the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment. Transects with potential adverse ecological impacts and the associated risk drivers are given in Appendix A and summarized below:

Summary of Creek Segment B Sampling Transects with Potential Adverse Ecological Impacts

Transect	Risk Drivers
TO	Total PAHs, Total PCBs, Zinc
T1	Total PCBs
T3	Total PAHs, Total PCBs
T4	Zinc
T5	Total PCBs
T6	Total PCBs
T8	Zinc
T11	Total PCBs, Zinc
T12	Total PAHs, Zinc
T16	Total PAHs
T17	Total PCBs

Additional response action may also be appropriate to isolate or remove residual organic constituents in creek bottom soil in Creek Segment B because of the calculated potential for leaching at the following transects:

Summary of Creek Segment B Sampling Transects with Potential for Soil Leaching to Groundwater

<u>Transect</u>	Potentially Leachable Constituents	
то	Chlorobenzene	
T1	Pentachlorophenol, Dieldrin	
T3	Nitrobenzene, Pentachlorophenol, Dieldrin	
T4	Pentachlorophenol	
T5	Chlorobenzene, Pentachlorophenol	
T6	Pentachlorophenol	
T 7	beta-BHC	
T8	Pentachlorophenol, beta-BHC	
T9	beta-BHC, delta-BHC	
T16	Dieldrin	
T17	Pentachlorophenol, Dieldrin	
T18	Chlorobenzene	

Potential leaching calculations are included in Appendix B.

2.1.2 Response Action Area and Volume

Based on the potential for adverse ecological risks and the potential for leaching of residual concentrations of organic constituents from creek bottom soil to groundwater, it is considered appropriate

to undertake additional response action at Creek Segment B Transects T0, T1, T3, T4, T5, T6, T7, T8, T9, T11, T12, T16, T17 and T18 to protect the environment and control the potential leaching of organic constituents to groundwater. Response action area and volume are estimated below:

Summary of Creek Segment B Response Action Area and Volume

	eek gment	Transects > Criteria	Upstream Clean <u>Transect</u>	Downstream Clean <u>Transect</u>	Impacted Channel <u>Length</u> (Feet)	Impacted Channel <u>Area</u> (Sq. Ft.)	Impacted Channel <u>Volume</u> (Cu. Yds.)
•	CS-B	T0, T1	T0	T2	200	20,000 (1	5,930 (2,3,4
		T3, T4, T5, T6, T7, T8	. T9 T2	T10	800	80,000 ⁽¹	23,700 ^{(2,3,4}
		T11, T12	T10	T13	300	30,000 (1	8,890 ^{(2,3,4}
		T16, T17, T18	T15	T18	<u>300</u>	30,000 ⁽¹	8,890 (2,3,4
				Total	1600	160,000	47,410

Notes:

- 1) Typical creek channel width in CS-B = 100 feet
- 2) Typical creek channel bottom elevation = EL 398 ft. amsl
- 3) Typical low groundwater elevation = EL 390 ft. amsl
- 4) Typical excavation depth = 8 ft.

2.1.3 Response Action Alternatives Analysis

Containment Response Action Alternative - Installing an armored impermeable liner along the entire length of Creek Segment B is considered an appropriate additional response action because 1500 ft of the 1800 ft. long channel have residual concentrations in creek bottom soils that exceed risk-based concentrations for the protection of fish or could leach to groundwater. In addition, installation of such a liner is required by the Order:

Jurisdiction and General Provisions (Page1, Paragraph 2) - "The Order also requires installation of a 40 millimeter (mil) [sic] high density polyethylene (HDPE) liner in CS-B"

Excavated Area Bottom Liner Requirements (Page 13, Section V.5) - "After excavation and sampling, Respondents shall properly install and maintain a 40 mil, HDPE liner in CS-B of Dead Creek."

Liner installation is also considered an appropriate response action because impacted groundwater from Sauget Area 1 Sites G, H and L can discharge into the north end of Creek Segment B during periods of high groundwater levels. Installation of an armored impermeable liner will prevent this impacted groundwater from discharging to surface water and migrating downstream via the surface water pathway.

An armored liner would have the following section:

Armored Channel Liner S	Armored Channel Liner Section				
Тор	Riprap Protective Layer	3 to 6-Inch Crushed Limestone+ Dense Grade Bedding Material			

Geotextile Membrane Liner Geotextile Non-Woven Cushion Layer 60 mil HDPE Non-Woven Cushion Layer

Preliminary design of the Creek Segment B liner is included in Appendix C.

Removal Response Action Alternative - Excavation of creek bottom soils in Creek Segment B does not appear to be an appropriate response action because potential adverse impacts associated with residual concentrations in creek bottom soils can be controlled by installation of an armored HDPE liner as required by the UAO. In addition, the June 21, 2002 Dead Creek Final Remedy Engineering Evaluation/Cost Analysis demonstrated that a channel liner in Creek Segment B provided the same level of human health and environmental protection as a removal remedy at a substantially lower cost. The Dead Creek Final Remedy EE/CA evaluated the following no action, containment and removal alternatives for creek bottom soils by comparing each alternative to the other alternatives and identifying the relative advantages and disadvantages of each.

Dead Creek Final Remedy Engineering Evaluation/Cost Analysis Remedial Alternatives

- Creek Bottom Soils Alternative A No Action
- Creek Bottom Soils Alternative B Containment
 - Institutional Controls
 - Containment

Bottom

- Lining 600 ft. of Creek Segment B
- Lining 800 ft. of Creek Segment F
- Monitoring
 - Surface Water Quality
 - Fish Tissue Bioaccumulation
- Creek Bottom Soils Alternative C Removal
 - Institutional Controls
 - Removal
 - Excavation and On-Site Disposal of 17,780 Cubic Yards from Creek Segment B
 - Excavation and On-Site Disposal of 2,220 Cubic Yards from Creek Segment F
 - Excavation and Off-Site Treatment of 9,630 Cubic Yards from Creek Segment F
 - Monitoring
 - Surface Water Quality
 - Fish Tissue Bioaccumulation

Containment and removal were the only remedial technologies identified as implementable and effective at managing the risks associated with residual concentrations in creek bottom soil. For the removal alternative, any excavated creek bottom soil that could not be transferred to the on-site containment cell was taken off-site for treatment and/or disposal.

A forced ranking system was used to identify the alternative that best achieved the requirements of the seven evaluation criteria used to evaluate remedial alternatives. In this forced ranking system, the alternative that best met the requirements of a criterion was awarded a score of 1, the second best

alternative was awarded a score of 2 and the third best alternative was awarded a score of 3. Using this ranking method, the alternative with the lowest score was the one that best met the requirements of the seven criteria. The comparative analysis of alternatives is summarized in the following table:

Dead Creek Final Remedy EE/CA Comparative Analysis of Interim Remedial Alternatives

The	reshold Criteria	<u>Àlternative A</u> (No Action)	Alternative B (Containment)	Alternative C (Removal)
•	Overall Protection of Human Health and the Environment	3	1	2
•	Compliance with ARARs Sub	<u>3</u> total 6	<u>2</u> 3	<u>1</u> 3
<u>Ba</u>	lancing Criteria			
•	Long-term Effectiveness and Perma	anence 3	1	2
•	Reduction of Toxicity, Mobility or Vo	lume 3	2	1
•	Short-Term Effectiveness	3	1	2
•	Implementability	1	2	3
•	Cost	<u>1</u> total 11	<u>2</u> 8	<u>3</u> 11
			-	•••
	Total S	core 17	11	14

No costs are associated with Alternative A. Alternative B (\$2,016,647) was less expensive than Alternative C (\$7,516,988) on a 30-year present value basis and provided similar protection of public health and the environment. Estimated costs for each alternative are summarized below:

Dead Creek Final Remedy Engineering Evaluation/Cost Analysis Remedial Alternative Cost Estimates

Project Element	Alternative B	Alternative C	
	(Containment)	(Removal)	
Institutional Controls	155,113	155,113	
Monitoring	453,426	453,426	
Remedial Action	1,139,220	6,712,310	
Operation and Maintenance	<u>268,888</u>	<u>196,139</u>	
30-Year Present Value Cost	\$2,016,647	\$7,516,988	

While Alternative A was clearly in lower cost and more readily implementable, Alternatives B and C were more effective short term and were the better alternatives for protecting public health and the environment, complying with ARARs, providing long-term effectiveness and permanence and reducing mobility, toxicity or volume. Alternative B scored higher than Alternative C because it provided greater long-term effectiveness and permanence by preventing the discharge of impacted groundwater from Sites G, H and L into Creek Segment B. Alternative C provided more reduction of mobility, toxicity and volume

than Alternative B. Alternative B and Alternative C could both achieve compliance with ARARs. Alternative C (Removal) was considered to be better able to achieve ARARs than Alternative B (Containment). Alternative B provided effective protection of public health and the environment at a lower cost than Alternative C.

2.1.4 Proposed Creek Segment B Response Action

The suite of remedial alternatives evaluated in the Dead Creek Final Remedy EE/CA was selected to be representative of the remedial alternatives that are available, rather than inclusive of all possible approaches. Evaluating containment and removal remedies separately for the purpose of preparing the EE/CA does not preclude the use of more than one alternative throughout Dead Creek, or the selection of different process options for containment or disposal, assuming those other alternatives are implementable and effective. Given the fact that the estimated volume of creek bottom soil to be excavated from Creek Segment B (47,410 cubic yards) greatly exceeds the remaining capacity of the onsite containment cell (19,000 cubic yards) and that the Time Critical Sediment Removal Action UAO requires installation of a liner in Creek Segment B, It is considered appropriate to treat Creek Segment B by containment and to consider excavation and on-site disposal for Creek Segments D and F.

2.2 CREEK SEGMENT D RESPONSE ACTION

2.2.1 Basis for Additional Response Action

Additional response action is considered appropriate in Creek Segment D to isolate or remove creek bottom soils that create potential adverse ecological impacts as identified by the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment. Transects with potential adverse ecological impacts to fish, and the associated risk drivers, are summarized below:

Summary of Creek Segment D Sampling Transects with Potential Adverse Ecological Impacts

Transect	Risk Drivers
T1	Zinc
T2	Zinc
T6	PCBs, Dioxin

Potential adverse ecological impacts are predicted for Transects T1 and T2 on the basis of residual zinc in creek bottom soils at concentrations higher than the site-specific, risk-based concentration for the protection of fish. Additional response action to protect fish is not considered appropriate at Transects T1 and T2 because annual dewatering/desiccation of Dead Creek due to weather and precipitation patterns in the American Bottoms and implementation of public health protection measures to control mosquitoes in Creek Segments B, C, D and E result in a habitat is not conducive to a sustainable fish population.

Dry conditions are not unusual in Dead Creek from late summer through the winter. Pools in Creek Segments B, C, D and E routinely dewater or dry up during these warm weather and/or low rainfall periods. Examination of the creek bed and riparian vegetation suggests that Dead Creek does not retain substantial amounts of standing water during the summer months and that water levels are dependent on relatively recent precipitation. Historical discharge data for other creeks in St. Clair County, Illinois (Canteen Creek, Mud Creek and Richland Creek) indicates a high variability in discharge over each year. However, for a large portion of each year, discharge is very low, often near zero. Both of these patterns occur each year, suggesting that low to zero flow conditions, as seen in Dead Creek, are common in the American Bottoms.

Dead Creek is an intermittent stream that acts as a set of shallow ponds rather than a riverine system. During dry weather, water levels in Creek Segments B, C, D and E fall below the culvert inverts at Judith Lane, Edwards and Cahokia Streets, Kinder Street, Jerome Lane, Edgar Street and the Parks College parking lot, respectively, creating a series of stagnant, discontinuous pools upstream of each road crossing. At the request of the Village of Cahokia, Solutia installed a storm water dewatering system in Dead Creek in February 2003 and began operating the system in March 2003 in order to dewater Creek Segments B, C, D and E (Appendix D). The Village requested this action as a public health measure to control mosquitoes in response to the threat of West Nile virus, which killed more than 50 Illinois residents in 2002. Significant portions of Dead Creek Segments C, D and E are bordered by residential areas:

Summary of Residential Land Use Adjacent to Dead Creek Segments B, C, D and E

<u>Segment</u>	East Bank	West Bank
CS-B	8.4 %	0.0 %
CS-C	60.0 %	57.2 %
CS-D	100.0 %	88.9 %
CS-E	22.7 %	45.4 %

Creek Segment D contains the highest amount of residential land use of any creek segment: 100 percent residential land use on its east bank and 88.9 percent on its west bank.

To protect public health, a total of six lift pumps were installed at the following locations in Dead Creek:

Summary of Dead Creek Storm Water Pumping System Lift Station Locations

Creek Segment C	1	Upstream of Pipeline Crossing South of Judith Lane
_	2	Upstream of Cahokia and Edward Streets
	3	Upstream of Kinder Street
Creek Segment D	4	Upstream of Jerome Lane
Creek Segment E	5	Upstream of Edgar Street
•	6	Upstream of Parks College Parking Lot

Installation of the storm water pumping system and elimination of standing water in Creek Segments B, C, D and E, results in a situation where aquatic habitat exists only until the pumping system dewaters impounded storm water. Dewatering typically takes three to five days and results in a dry channel over most of Creek Segments C, D and E.

Since there are periods during which storm water can flow through Creek Segments B, C, D and E, i.e. during and immediately after rain storms when water levels are above culvert invert elevations, performance monitoring to ensure that residual zinc in creek bottom soils is not transported downstream during storm events is considered an appropriate response action for Transects T1 and T2. Proposed performance monitoring is discussed below (Surface Water Monitoring).

2.2.2 Response Action Area and Volume

Based on potential ecological risks to fish, it is considered appropriate to take additional action at Creek Segment D Transect T6 to protect the environment. Response action area and volume are estimated below:

Summary of Creek Segment D Response Action Area and Volume

Creek Segment	Transects Exceeding Risk Based Concentrations	Upstream Clean <u>Transect</u>	Downstream Clean Transect	Impacted Channel <u>Length</u> (Feet)	impacted Channel <u>Area</u> (Sq. Ft.)	impacted Channel <u>Volume</u> (Cu, Yds.)
• CS-D	Т6	T5	Т6	<u>200</u>	20,000 ⁽¹	5,930 ^{(2,3,4}
			Total	200	20,000	5,930

Notes:

- 1) Typical creek channel width in CS-D = 100 feet
- 2) Typical creek channel bottom elevation ≈ EL 398 ft. amsl
- 3) Typical low groundwater elevation = EL 390 ft. amsl
- 4) Typical excavation depth = 8 ft.

2.2.3 Proposed Creek Segment D Response Action

Additional removal action is considered appropriate at Transect 6 because the risk drivers at this sampling location, PCBs and Dioxin, are bioaccumulative constituents that should be isolated or removed from the environment. Isolation could be achieved by lining the channel of Creek Segment D between Jerome Lane and Transect 5, the next upstream clean sampling transect. Removal could be achieved by excavating creek bottom soils between Jerome Land and Transect 5 and transferring them to the on-site containment cell. This would use 6,000 cubic yards (in round numbers) of the 19,000 cubic yards of remaining cell capacity. Since there is available capacity in the on-site containment cell, excavation and isolation of these creek bottoms soils in the on-site containment cell is considered to be a more appropriate additional response action than isolation by containment with a liner.

DRAFT File DC060603

2.3 CREEK SEGMENT F RESPONSE ACTION

2.3.1 Basis for Additional Response Action

An additional response action is considered appropriate in Creek Segment F to isolate or remove creek bottom soils that create potential adverse ecological impacts as identified by the June 21, 2002 Dead Creek Final Remedy Ecological Risk Assessment. Transects with potential adverse ecological impacts to fish, and the associated risk drivers, are summarized below:

Summary of Creek Segment F Sampling Transects with Potential Adverse Ecological Impacts

<u>Transect</u>	Risk Drivers
T5	Zinc

2.3.2 Response Action Area and Volume

Based on these potential ecological risks, it is considered appropriate to take additional remedial action at Creek Segment F Transect T5 to protect the environment. Response action area and volume are estimated below:

Summary of Creek Segment D Remediation Area and Volume

	Creek gment	Transects Exceeding Risk Based Concentrations	Upstream Clean <u>Transect</u>	Downstream Clean Transect	Impacted Channel <u>Length</u> (Feet)	Impacted Channel <u>Area</u> (Feet ²)	impacted Channel <u>Volume</u> (Yards ³)
•	CS-F	Т5	T4	T6	<u>800</u>	40,000 (1	11,850 (2,3,4
				Total	800	40,000	11,850

Notes:

- 1) Typical creek channel width in CS-F = 50 feet
- 2) Typical creek channel bottom elevation = EL 398 ft. amsl
- 3) Typical low groundwater elevation = EL 390 ft. amsl
- 4) Typical excavation depth = 8 ft.

2.3.3 Proposed Creek Segment F Response Action

Potential adverse ecological impacts at Transect 5 could be controlled by isolating these creek bottom soils with an armored, impermeable liner or by removing the impacted creek bottom soils and transferring them to the on-site containment cell. Removal and transfer to the on-site containment cell is considered a more appropriate additional response action than installation of an armored impermeable liner because Creek Segment F downstream of the Terminal Railroad Association embankment is the only non-urbanized stretch of Dead Creek with the potential to be conducive to a sustainable fish population. For this reason, removal of creek bottom soils with residual zinc concentrations and transfer of this material to

Dead Creek Final Remedy Engineering Evaluation/Cost Analysis Response to Comments and Proposed Response Actions Sauget Area 1, Sauget and Cahokia, Illinois

RESPONSE ACTIONS

the on-site containment cell is considered a more appropriate additional response action than installation of an armored impermeable liner.

Installation of an armored impermeable liner would make it difficult to create a habitat conducive to a sustainable fish population. Other factors make creation of such a habitat difficult, including:

- Storm water runoff from the Phillips Pipeline Company property north of Cargill Road discharging into this portion of Dead Creek is needed to sustain stream flow;
- Farming is conducted along a good portion of the east bank of this creek segment; and
- The Borrow Pit Lake at the downstream end of this creek segment is used as a storm water detention basin by the MetroEast Sanitary District.

In addition, it will be difficult to implement the approved Dead Creek Sediment Removal Action Mitigation Plan if an armored impermeable liner is installed. Restoring this stretch of Dead Creek as described in the Mitigation Plan tips the balance in favor of removal and on-site containment.

Since there is available capacity in the on-site containment cell, excavation and isolation of these creek bottoms soils in the on-site containment cell is considered to be a more appropriate additional response action than isolation with by containment with a liner. This would use 12,000 cubic yards (in round numbers) of the 13,000 cubic yards of remaining cell capacity after soils containing residual concentrations of PCBs and Dioxin are removed from Creek Segment D.

3.1 SOIL TO GROUNDWATER LEACHING INVESTIGATION

3.1.1 Observed Soil to Groundwater Leaching

Leaching of residual constituent concentrations in creek bottom soils was to be evaluated in the Dead Creek Final Remedy EE/CA using TCLP extracts of selected creek bottom soil samples (10 percent of the total number of samples collected). Extracts were to be analyzed for VOCs, SVOCs, Pesticides, Herbicides, PCBs, Dioxin and Metals. Unfortunately, through a misunderstanding between field sampling personnel and the analytical laboratory, the analytical laboratory only analyzed the selected samples for RCRA Hazardous Waste Characteristic TCLP parameters. Re-sampling and analysis could not be performed before the required June 2002 submittal date for the Dead Creek Final Remedy EE/CA. For that reason, shallow groundwater quality data collected during performance of the Sauget Area 1 EE/CA and RI/FS Support Sampling Plan was used to address the issue of creek bottom soil leaching to groundwater.

Shallow groundwater samples were collected at or in the vicinity of Creek Segment B and Site M, both of which had higher sediment constituent concentrations than sediments in Creek Segments C, D, E and F. Two of these sampling locations were specifically selected to address the issue of contaminant migration from sediments in Creek Segment B and Site M to shallow groundwater adjacent to these potential sources of groundwater impact. One shallow groundwater sampling location was located immediately adjacent to Creek Segment B just north of Judith Lane (SGW-S2). Another shallow groundwater sampling locations was located immediately adjacent to Site M at the west end of Walnut Street (SGW-S1). Samples were collected at three depths at each of these locations (at the water table 15 feet below ground surface and at 20 and 40 feet below ground surface). Time-series sampling was also conducted from a well completed at 40 feet below ground surface at each of these sampling locations (TS-S2 at Judith Lane and TS-S1 at Walnut Street).

Maximum detected concentrations in unfiltered shallow groundwater collected from sampling locations SGW-S2/TS-S2 (Creek Segment B at Judith Lane) and SGW-S1/TS-S1 (Site M at Walnut Street) are summarized below along with maximum reported constituent concentrations in Creek Segment B and Site M post-removal bottom soils:

Maximum Constituents Concentration Detected in Unfiltered Shallow Groundwater and Bottom Solis, pop					
	Creek Segment B		Site M		
Class I Groundwater Standard	Groundwater	Bottom Soil	Groundwater	Bottom Soil	
• Trichloroethylene 5	0.064	34	ND	ND	

)Cs					
1, 4-Dichlorobenzene	1	ND	5,500	0.39	4,100
Pentachiorophenol	75	ND	44,000	0.077	290
Bis(2-ethylhexyl)phthalate	6	0.70	81,000	ND	1,400
Di-n-butylphthalate	700	ND	100	0.37	ND
18					
Acenapthylene	420	0.65	240	0.87	ND
Benzo(a)anthracene	0.13	0.37	1,900	0.52	720
Benzo(a)pyrene	0.2	ND	1,200	0.49	490
Benzo(b)fluoranthene	0.17	ND	1,400	0.44	640
Benzo(g,h,i)perylene	No Std.	0.72	890	1.1	410
Chrysene	1.5	0.45	1,900	0.70	820
Fluorene	280	1.3	3,500	1.6	490
Indeno(1,2,3-cd)pyrene	0.43	ND	830	0.66	87
ticides					
alpha-BHC	0.11	ND	2.9	0.0037	2.
beta-BHC	No Std.	0.0020	7.7	0.0064	ND
gamma-BHC	0.2	0.0059	2.3	0.032	4.
gamma-Chlordane	2	0.0012	0.4	0.0022	ND
4. 4-DDE	10	0.0020	35	ND	35
Dieldrin	9	ND	30	0.0032	ND
Endosulfan I	42	ND	12	0.0011	ND
Endrin Aldehyde	2	ND	ND	0.0032	66
Heptachlor	0.4	ND	0.75	0.0019	160
Heptachlor epoxide	0.2	ND	410	0.0014	860
Methyoxychlor	40	ND	6.6	0.0054	ND
bicides					
2, 4-DB	No Std.	0.66	64	ND	66
2, 4, 5-TP	50	ND	2	0.11	ND
al PCBs	0.5	ND	84,830	0.056	27,138
xin TEQ	No Std.	0.00004	17	0.0001	5
als					
Cadmium	5	ND	57,000	ND	21,000
Copper	650	5.9	10,000,000	56	5,200,000
Lead	7.5	5.3	700,000	36	270,000
Mercury	2	0.10	840	0.38	300
Nickel	100	22	630,000	59	1.170.000

Note: Bold concentrations are greater that Illinois Class I Groundwater Standard

A total of 28 organic constituents were detected in shallow groundwater immediately adjacent to Creek Segment B and Site M. Of these 28 organic constituents, four were detected at concentrations higher than the Illiniois Class I Groundwater Standards:

Summary of Constituents Detected in Shallow Groundwater at Concentrations > Class I GW Standard, ppb

		Soil Concentration	Groundwater Concentration	Dilution Factor
•	Benzo(a)anthracene (Creek Segment B	1920	0.37	1385
•	Benzo(a)anthracene (Site M)	720	0.52	51 3 5
•	Benzo(a)pyrene	490	0.49	1000

•	Benzo(b)fluoranthene	640	0.44	1455
	Indeno(1,2,3-cd)pyrene	87	0.66	132
•	Lead	270,000	36	7500

Dilution factors (soil concentration/groundwater concentration), ranging from a low of 132 to a high of 7500, provide an indication that leaching of residual constituent concentrations from bottom soils to groundwater is not a major contaminant migration pathway at Creek Segment B and Site M.

Comparison of detected groundwater concentrations to maximum observed pre-removal sediment concentrations provides further evidence that leaching to groundwater is not a significant migration pathway. Comparing bottom soil residual concentrations in Creek Segment B and Site M to pre-removal action sediment concentrations further reinforces the evidence that leaching to groundwater is not a significant migration pathway:

Summary of Sediment, Bottom Soil and Groundwater Concentrations in CS-B and Site M, ppb

		<u>Sediment</u>	<u>Soi</u> l	Groundwater
•	Benzo(a)anthracene (Creek Segment B	9,000	1920	0.37
•	Benzo(a)anthracene (Site M)	1,300	720	0.52
•	Benzo(a)pyrene	10,000	490	0.49
•	Benzo(b)fluoranthene	30,000	640	0.44
•	Indeno(1,2,3-cd)pyrene	9,000	87	0.66
•	Lead	24.000.000	270.000	36

Sediment concentrations are up to two orders of magnitude higher than creek bottom soil concentrations which, in turn, are two to four orders of magnitude higher than the groundwater concentrations. Sediment to groundwater dilution factors ranging from 2,500 for Benzo(a)anthracene to 68,182 for Benzo(b)fluoranthene provide an additional indication that leaching of constituents from sediments and residual concentrations in creek bottom soil is not a major migration pathway.

Comparing contamination migration via the sediment to creek bottom soil to groundwater pathway to contaminant migration from Sites G, H and L to groundwater provides additional evidence that contaminant migration by the former pathway is limited:

Summary of Source Area Fill Material and Groundwater Maximum Concentrations at Sites G, H and L, ppb

		Fill Material	<u>Groundwater</u>
•	Benzo(a)anthracene	377 ,500	1.90
•	Benzo(a)pyrene	271,000	5.70
•	Benzo(b)fluoranthene	ND	3.70
•	Indeno(1,2,3-cd)pyrene	135,9 00	5.60

• Lead 4,500,000 50

Note – Source area fill material concentrations from 1998 Ecology and Environment, Inc. "Expanded Site Investigation, Dead Creek Project Sites at Cahokia/Sauget, Illinois, Volume 2 of 2" report prepared for the Illinois Environmental Protection Agency

3.1.2 Predicted Soil to Groundwater Leaching

USEPA did not accept the information included in the Dead Creek Final Remedy EE/CA as conclusive evidence that leaching of residual constituents from creek bottom soils to groundwater was not occurring. In the absence of site-specific leaching data, Solutia attempted to address the issue by using a soil to groundwater leaching estimation process contained in the Illinois TACO regulations (35 IAC 742). Leaching estimates using this methodology were revised in response to March 18, 2003 Agency comments and the results of these revisions are given below except for the organic leaching results for Creek Segment B, which are discussed in Section 2.1 Creek Segment B Response Action above.

Residual concentrations of Dieldrin, beta-BHC and 1,1,2,2-Tetrachloroethane are predicted to leach from creek bottom soils in Creek Segments C, D and E at concentrations greater than Illinois Class I Groundwater Standards at the following locations:

Calculated Potential for Organics Leaching from Creek Bottom Soils

CS-D	T6	Dieldrin
CS-E	T16	Dieldrin
CS-F	T3	beta-BHC
	T16	1, 1, 2, 2-Tetrachloroethane

Additional investigation of the soil to groundwater pathway is not considered appropriate for organics because:

- Potential for leaching from creek bottom soil to groundwater occurs at only at 4 out of 49 sampling transects in a 15,000 ft. long channel;
- Dead Creek is bordered by urban and agricultural areas and commonly used pesticides (beta-BHC and Dieldrin)
 are predicted to result in soil to groundwater leaching at three of these four transects all of which are located in
 residential or agricultural areas; and
- Predicted Tetrachloroethane leaching from creek bottom soil at the last sampling transect in Creek Segment F is
 unlikely given the volatile nature of this constituent.

Cadmium is the only potentially leachable metal in creek bottom soils:

Calculated Potential for Cadmium Leaching from Creek Bottom Soils

CS-B	T0, T1, T2, T3, T6, T7, T8, T9, T10, T11, T12, T17 and T18
CS-C	T1, T2, T3, T4, T6, T7, T8 and T9
CS-D	T1, T2, T3, T4, T5 and T6
CS-E	T1, T2, T3, T4, T5, T6, T7, T9, T12, T16 and T17
CS-F	T5, T6, T7, T8, T9, T10, T11, T12, T14 and T15

Available soil and groundwater data indicates that leaching of cadmium from source area fill material, preremoval sediments and residual concentrations in creek bottom soils to groundwater, is not a contaminant
migration pathway. Cadmium was detected in Site G, H and L fill material at concentrations up to
294,000 ppb, however, it was not detected in downgradient groundwater (MDL = 5 ppb). Cadmium was
not detected in groundwater adjacent to Creek Segment B and Site M, at a detection limit of 5 ppb, even
though pre-removal sediment concentrations were 24,000 and 17,000 ppb and bottom soil concentrations
were 21,000 and 57,000 ppb, respectively. However, because residual cadmium concentrations are
present in creek bottom soils, there is a potential for cadmium to leach to groundwater at concentrations
higher than the Illinois Class I Groundwater Standard of 5 ppb based on leaching estimates derived from
TACO Tier 2 estimating procedures.

3.1.3 Proposed Soil to Groundwater Leaching Investigation

Additional investigation of the soil to groundwater leaching pathway is considered appropriate for cadmium because of the calculated potential for creek bottom soils to leach cadmium to groundwater using TACO Tier 2 estimating procedures. Cadmium leaching to groundwater will be evaluated by collecting soil and groundwater samples at three locations in each creek segment as shown below:

Proposed Cadmium Leaching Sampling Locations

	Sampling Station	Transect Sampling Group
CS-B	1	T0, T1, T2 and T3
	2	T6, T7, T8, T9, T10, T11 and T12
	3	T17 and T18
CS-C	1	T1 and T2
	2	T3 and T4
	3	T6, T7, T8 and T9
CS-D	1	T1 and T2
	2	T3 and T4
	3	T5 and T6
CS-E	1	T1, T2, T3, T4, T5, T6 and T7
	2	T9 and T12
	3	T16 and T17
CS-F	1	T5, T6, T7 and T8
	2	T9, T10, T11 and T12
	3	T14 and T15

Note - Bold transects are proposed soil and groundwater sampling locations.

Sampling stations will be located at transects with the highest calculated potential for cadmium leaching from soil to groundwater as shown in bold above.

Continuous soil cores will be collected from the creek bed to the water table using push sampling techniques. These continuous soil cores will be subdivided into two-foot long samples which will be

analyzed for Total and TCLP-Extractable Cadmium. A groundwater sample will be collected immediately below the water table using a push sampling device equipped with a two-ft. long intake and low-flow sampling techniques. Groundwater samples will be analyzed for Total (Unfiltered) Cadmium, Dissolved (Filtered) Cadmium and Total Suspended Solids. Assuming a depth to groundwater of ten feet, a total of 75 soil samples will be collected and analyzed using the methods, procedures and protocols included in the Sauget Area 1 EE/CA and RI/FS Support Sampling Plan Field Sampling Plan and Quality Assurance Project Plan approved by USEPA on September 9, 1999.

Samples will be collected from the lowest point in the channel at each of the 15 sampling locations:

Number of Soil Sampling Stations Number of Soil Samples per Station Number of Soil Samples Analyses	15 5 75 Total Cadmium TCLP Extractable Cadmium	USEPA SW846 Method 7131A USEPA SW846 Method 1311
Number of Groundwater Sampling Stations Number of Groundwater Samples per Station Number of Groundwater Samples Analyses	15 1 15 Total Cadmium Dissolved Cadmium Total Suspended Solids	USEPA SW846 Method 7131A USEPA SW846 Method 7131A

Soil and groundwater cadmium concentrations will be plotted as a function of depth below the bottom of the creek channel to determine whether or not cadmium is leaching from creek bottom soils to groundwater. If cadmium is leaching to groundwater at concentrations higher than the 5 ug/l Illinois Class I groundwater standard, evaluation of the risks associated with cadmium migration in the groundwater system is considered appropriate.

4.1 FISH TISSUE PERFORMANCE MONITORING

4.1.1 Performance Monitoring Rationale

Fish tissue monitoring is considered an appropriate performance measure because known bioaccumulative constituents (PAHs, Pesticides, PCBs, Dioxin and Mercury) were present as residual concentrations in creek bottom soils after completion of sediment removal. Due to dewatering/desiccation of Dead Creek in response to annual precipitation patterns and installation of a storm water dewatering system in Creek Segments B, C, D and E as a public health measure, only Creek Segment F can be expected to contain water long enough to be conducive to a sustainable fish population. Creek Segment F north of the Terminal Railroad embankment dries up in warm weather and/or low rainfall periods. Creek Segment F south of the embankment dewaters but does not dry up, probably as a result of water flow from the Phillips Pipeline Co. property. Therefore, it is considered appropriate to focus fish tissue performance monitoring on this portion of Creek Segment F.

As directed by the Agency, Total PAHs and Pesticides were added to the list of known bioaccumulative compounds (PCBs, Dioxin and Mercury) to be evaluated in the Dead Creek Final Remedy Ecological Risk Assessment. This evaluation was included in the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment. Potential risks due to residual concentrations of PAHs in creek bottom soils were determined by using USEPA's Draft Equilibrium Partitioning Sediment Guidelines for PAH Mixtures, as directed by the Agency. This evaluation concluded:

Page 14, Last Paragraph - "some creek bottom soils in Creek Segment B are not protective of benthic organisms. However, it should be noted that the frequency of false positives in this model is expected to be high because an adjustment factor was used to account for the fact that only 13 PAHs, rather than 34, were examined. Results of the ESG Model indicate that soils in Creek Segments C, D, E and F are protective of benthic organisms based on the bioaccumulation of PAHs."

For this reason, and the fact that the Time Critical Sediment Removal Action UAO requires installation of an impermeable liner in Creek Segment B, PAHs are not included in the fish tissue performance monitoring plan.

Pesticides are not included in the fish tissue performance monitoring program for two reasons. First, Aldrin, apha-BHC, beta-BHC, delta-BHC, gamma-BHC, Endosulfan I, Endrin ketone, Heptachlor, Heptachlor expoxide and Methoxychlor were not detected in creek sediment or fish tissue samples collected during implementation of the Sauget Area 1 EE/CA and RI/FS Support Sampling Plan. Second, DDT, Dieldrin and Chlordane concentrations in creek bottom soils do not exceed their site-specific, risk-based concentrations derived from average and maximum BSAFs.

Total PCBs and Dioxin are not included in the fish tissue performance monitoring program because Total PCBs and/or Dioxin were detected in concentrations greater than site-specific, risk-based levels only at Creek Segment B Transects T0 and T3 and Creek Segment D Transect T6. These creek bottom soils will be isolated in Creek Segment B by installation of an armored, impermeable liner and removed from Creek Segment D and transferred to the on-site containment cell.

Mercury was selected as a COPC in the June 30, 2001 Sauget Area 1 EE/CA and RI/FS Ecological Risk Assessment due to exceedance of ecological thresholds for sediments and identified as a COC due to a potential unacceptable impacts (toxicity) to forage fish in the Borrow Pit Lake and birds (Great Blue Heron) feeding on the forage fish. A potential unacceptable ecological impact was predicted due to the presence of 0.6 mg/kg of mercury in a composite whole body forage fish tissue sample collected from the Borrow Pit Lake:

Summary of Total Mercury Concentrations in Borrow Pit Lake Whole Body Biota Samples, mg/kg

	Sample 1	Sample 2	Sample 3
Bottom Feeder Fish	0.05	0.075	0.26
Forage Fish	0.052	0.6	ND (0.1)
Predator Fish	ND (0.016)	0.057	0.064
Shrimp	ND (0.091)	NS	NS
Clams	ND (0.074)	ND (0.091)	ND (0.10)
Notes:	- (/	` '	, ,

¹⁾ Bold concentrations indicate exceedance of the 0.25 mg/kg whole body predator fish toxicity value for Mercury. Whole body forage fish toxicity value is 0.8 mg/kg.

The source of mercury detected in Forage Fish Sample 2 is not known.

During implementation of the Sauget Area 1 EE/CA and RI/FS Support Sampling Plan, sediment samples were collected in the Borrow Pit Lake to determine the impact, if any, of discharges from Dead Creek on the Borrow Pit Lake. If Dead Creek was a migration pathway from source areas (Sites G, H, I and L) in the upstream portion of its watershed to the Borrow Pit Lake, there should be a concentration high where Dead Creek discharges into the Borrow Pit Lake. Sediment deposition typically occurs when a stream enters a lake because water velocity decreases and the energy environment is too low to keep all of the sediments in suspension.

Four sediment samples were collected to determine whether or not impacted sediment deposition was occurring at the mouth of Dead Creek, i.e. a concentration high or "hot spot". One sample was collected 3,000 ft. upstream of the confluence of Dead Creek and the Borrow Pit Lake in the backwater area, a second sample was collected 200 ft upstream of the confluence of Dead Creek with the Borrow Pit Lake,

²⁾ NS = No Sample

a third sample was collected at the mouth of Dead Creek and the fourth sample was collected 200 ft. downstream of the confluence. Mercury analyses from these samples are given below, along with copper and zinc concentrations, metals that are known site-specific constituents:

Summary of Sediment Metal Concentrations at the Confluence of Dead Creek and the Borrow Pit Lake, mg/kg

	Mercury	Copper	<u>Zinc</u>
Backwater of Borrow Pit Lake, 300 ft. Upstream of Confluence	0.091	48	320
200 ft. Upstream of Dead Creek Confluence	0.11	64	36
Mouth of Dead Creek	0.45	240	1,600
200 ft. Downstream of Dead Creek Confluence	0.16	36	250

These data indicate that a metals "hot spot" (concentration high) occurs at the mouth of Dead Creek where the channel portion of Creek Segment F enters the Borrow Pit Lake. None of these data indicate there is a mercury concentration high ("hot spot") in the Borrow Pit Lake sediments. From an ecological impact perspective, mercury concentrations in two of the three sediment samples from the Borrow Pit Lake were lower than all of the threshold values considered to pose ecological food chain risks in the June 21, 2002 Dead Creek Final Remedy Ecological Risk Assessment:

Comparison of Borrow Pit Lake Sediment Mercury Concentrations to Ecological Screening Levels, mg/kg

Borrow Pit Lake Sediment Concentration			Ecological Screening Levels			
Sample 1	Sample 2	Sample 3	TEL	TEC	LEL	PEC
0.091	0.11	0.16	0.13	0.18	0.20	1.06

- Notes: 1) Concentrations higher than screening levels indicated in bold print
 - 2) TEL = Florida Sediment Quality Assessment Guidelines
 - 3) TEC = Sediment Quality Guidelines Threshold Effects Concentration
 - 4) LEL = Ontario Guidelines Lowest Effects Level
 - 5) PEC = Sediment Quality Guidelines Probable Effects Concentration

One of the three Borrow Pit Lake sediment samples (Sample 3) exceeded the lowest of the three ecological screening levels by 0.03 mg/kg. Sample 3 was collected 200 ft. downstream of the confluence of Dead Creek with the Borrow Pit Lake.

In the June 21, 2002 Sauget Area 1 Dead Creek Final Remedy Ecological Risk Assessment, mercury was not evaluated as a COC because mercury concentrations in composite fish samples collected during implementation of the Sauget Area 1 EE/CA and RI/FS Support Sampling Plan could not be demonstrated to be dependent on sediment mercury concentrations. Statistical regression analysis indicate there was not a strong or statistically significant (r = - 0.2391) relationship between observed mercury concentrations in sediment and fish tissue. Consequently, a site-specific BSAF was not derived for mercury uptake by fish from residual concentrations in creek bottom soils.

As directed by the Agency, maximum and average site-specific BSAFs were calculated for mercury in the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment using the following forage fish tissue and sediment data from Creek Segments B and D and the Borrow Pit Lake:

Total Mercury Concentrations Used to Determine Site-Specific BSAFs, mg/kg

	Forage Fish Tissue Samples			Pre-Removal Sediment Samples		
	1	2	3	1	2	3
CS-B	ND (0.095)	NS	NS	0.96	1.5	1.4
CS-D	0.018	NS	NS	0.5	0.42	0.35
Borrow Pit Lake	0.052	0.6	ND (0.1)	0.091	0.16	0.11
Reference Area 1	0.05	NS	NS	0.042	0.063	NS
Reference Area 2	0.051	0.064	0.046	0.046	0.048	0.04

Note: NS = No Sample

Site-specific maximum and average mercury BSAFs were calculated using the formula:

Mercury BSAF = Concentration in Fish Tissue, mg/kg wet weight/Concentration in Sediment, mg/kg dry weight

When mercury was not detected in sediment samples, one half of the detection limit was used in these
calculations. BSAF calculations are summarized below:

Summary of Calculated Mercury BSAFs for Forage Fish and Creek Bottom Soils

	Forage Fish Composite Samples			
	Sample 1	Sample 2	Sample 3	
CS-B	NDFF	NFFS	NFFS	
CS-D	0.0426	NFFS	NFFS	
Borrow Pit Lake	0.419	4.84	NDFF	
Reference Area 1	0.952	NFFS	NFFS/NCBSS	
Reference Area 2	1.17	1.47	1.06	

Note: NDFF = Not Detected in Forage Fish

NDCBSS = Not Detected in Creek Bottom Soil

A maximum site-specific BSAF of 4.84 and an average site-specific BSAF of 1.42 were derived for forage fish using this limited data set. The median and mid-point of range BSAFs were 1.06 and 1.1, respectively. Please note that the maximum site-specific BSAF of 13 recorded in Table 7-3 of the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment is incorrect. The site-specific BSAF of 1.42 calculated using average concentrations from a limited data set is within the range reported in the literature. Literature BSAFs for mercury in forage fish range from 0.61 mg/kg for mosquito fish, 0.7 to 1.4 for minnows and 1.4 to 2 for bluegill sunfish (November 12, 2002 Response to Agency Comments on Ecological Risk Assessment, Page 20). Higher BSAF values are reported in the

literature for predator fish such as pike, however, these higher values are not appropriate for the type of fish (forage fish) that might be present in Dead Creek.

For the maximum site-specific BSAF of 4.84, the site-specific, risk-based concentration for creek bottom soils to protect fish from mercury uptake is 0.05 mg/kg. To put an RBC of 0.05 mg/kg into perspective, it is two to 20 times lower than the:

•	IEPA mean mercury background concentration for Illinois soils	0.12 mg/kg
•	Threshold Effects Concentration (TEC) Sediment Screening Level	0.18 mg/kg
•	Probable Effects Concentration (PEC) Sediment Screening Level	1.06 mg/kg

A BSAF of 4.84 and an RBC of 0.05 mg/kg results in potential unacceptable impacts to fish, and herons preying on the fish, along the entire 15,000 ft. length of Dead Creek between Queeny Avenue and the Borrow Pit Lake.

Using the average site-specific BSAF of 1.42, a creek bottom soil RBC of 0.18 mg/kg is needed to protect fish from mercury uptake. This RBC corresponds to the 0.18 mg/kg Threshold Effects Concentration (TEC) sediment screening level used in the November 12, 2002 Response to Agency Comments on Ecological Risk Assessment. To achieve this RBC, the following transects need to be isolated or removed:

Summary of Sampling Transects To Be Isolated or Removed to Achieve Site-Specific RBC for Mercury

CS-B	T0, T1, T2, T3, T6, T9, T11, T12 and T17
CS-C	T6
CS-D	T4 and T6
CS-E	T2, T6, T8, T9, T10, T11, T12, T13, T14, T15, T16 and T17
CS-F	T3 T5 T9 and T14

On this basis, 11,550 feet (77 percent) of the creek bottoms soils Dead Creek channel between Queeny Avenue and the Borrow Pit Lake would need to be lined or excavated to protect fish from mercury uptake.

Based on limited data, residual mercury concentrations in creek bottom soils create a potential problem that could impair future restoration of aquatic habitat in Dead Creek. As indicated below, mercury was detected in every creek bottom soil sample:

Summary of Maximum Total Mercury Concentrations in Creek Bottom Soils, mg/kg

Transect/ Sample	CS-B	<u>cs-c</u>	CS-D	CS-E	CS-F	
0	0.82	NST	NST	NST	NST	
1	0.23	0.046	0.14	0.11	0.12	
2	0.24	0.06	0.11	0.25	0.074	
3	0.27	0.046	0.07	0.11	0.63	

4	0.099	0.13	0.71	0.083	0.038
5	0.054	0.074	0.065	0.094	0.82
6	0.21	0.31	0.33	0.25	0.14
7	0.12	NST	NST	0.12	0.086
8	0.15	NST	NST	0.34	0.09
9	0.29	NST	NST	0.6	0.32
10	0.16	NST	NST	0.6	0.11
11	0.8	NST	NST	0.46	0.093
12	0.84	NST	NST	0.69	0.031
13	0.096	NST	NST	0.84	0.018
14	0.032	NST	NST	0.28	0.32
15	0.064	NST	NST	0.25	0.17
16	0.12	NST	NST	1.6	0.04
17	0.34	NST	NST	0.27	NST
18	0.055	NST	NST	NST	NST

Notes: 1) NST = No Sampling Transect

Nearly half (28 of 44 or 44.7 percent) of the detected mercury concentrations in creek bottom soil are above the TEC/RBC concentration of 0.18 mg/kg. This indicates a potential for adverse impacts on the aquatic ecosystem in Dead Creek.

4.1.2 Performance Monitoring Plan

Fish tissue monitoring will be performed annually in Creek Segment F downstream of the Terminal Railroad Association Embankment to determine whether or not: 1) mercury present in creek bottom soils at concentrations above site-specific, risk-based concentrations is bioaccumulating in fish tissue, 2) concentration trends over time are upward, downward or stabile and 3) toxicity threshold values are exceeded. As discussed above, a storm water pumping system was installed in Creek Segments B, C, D and E to protect public health. As a consequence of this public health measure and normal dewatering/desiccation of the creek in response to annual precipitation patterns, potential habitat in Dead Creek conducive to a sustainable fish population is restricted to Creek Segment F downstream of the Terminal Railroad Association embankment. Therefore, it is considered appropriate to perform fish tissue sampling and mercury speciation analyses in those segments of Dead Creek that are conducive to a sustainable fish population.

In order to determine if mercury is bioaccumulating in forage fish, the 5200 feet length of Creek Segment F between the Terminal Railroad Association embankment and the Borrow Pit Lake will be divided into ten equal sections and isolated from each other using netting fine enough to prevent upstream or downstream movement of forage fish. Forage fish will be collected from each isolation section, one composite sample for each 500 ft. sampling section, and analyzed for Total and Methyl Mercury. A summary of the proposed monitoring program is given below:

Summary of Proposed Fish Tissue Performance Monitoring Program

²⁾ Bold = Concentration greater than TEC/RBC of 0.18 mg/kg

Location 10 - 500 ft. Long Isolation Sections in Creek Segment F **Frequency** Annual **Number of Samples** 10 Composites Sample Media Whole Body Forage Fish **Analytical Parameters** Total and Methyl Mercury **Analytical Methods** Method 7471 **Total Mercury** Methyl Mercury Method 1630 (Modified) **Performance Measures** Concentration Time Trends Comparison to Fish Toxicity Thresholds: Mercury 0.8 mg/kg

Note: A whole body toxicity value for fathead minnows was used for the performance monitoring fish toxicity threshold. A toxicity threshold of 0.25 mg/kg would be appropriate if predator fish were the performance monitoring target species, however, predator fish are not likely to be present in Dead Creek.

Performance monitoring results will be evaluated at the end of five years to determine whether or not performance monitoring needs to continue. If monitored constituent concentrations are steady state, decreasing or below criteria, monitoring will be discontinued.

4.2 STORM WATER PERFORMANCE MONITORING

4.2.1 Rationale

Storm water monitoring is considered an appropriate performance measure because residual constituent concentrations in creek bottom soil may result in an adverse impact on benthic organisms if transported downstream to Creek Segment F and/or the Borrow Pit Lake at concentrations higher than ten times their Probable Effects Concentrations (PECs). Residual constituent concentrations in creek bottom soils exceed ten times the Probable Effects Concentration (PEC) at the following locations:

Summary of Sampling Transects with Creek Bottom Soil Concentrations > 10 Times PECs

СЅ-В	то	SVOCs Pesticides	Napthalene and 2-Methylnapthalene DDD and Heptachlor epoxide
		Total PCBs	
		Metais	Copper, Nickel and Zinc
	T1	Metals	Nickel
	T2	Metals	Copper
	T3	SVOCs	Bis(2-ethylhexyl)phthalate and 2-Methylnapthalene
		Total PCBs	
	T4	Metals	Zinc
	T8	Metals	Zinc
	T11	Metals	Cadmium, Nickel and zinc
	T12	Metals	Nickel and Zinc
	T16	Metals	Copper
CS-C	Т3	Metals	Nickel
CS-D	T1	Metals	Zinc
	T2	Metais	Zinc
	T6	Metals	Copper and Nickel
CS-E	T16	Metals	Copper, Nickel and Zinc

CS-F

T5

Metals

Cadmium, Nickel and Zinc

4.2.2 Performance Monitoring Plan

Constituents in creek bottom soils that exceed ten times the PEC are from four analytical parameter groups: SVOCs, Pesticides, PCBs and Metals. To ensure that these constituents are not migrating via the surface water pathway during storm conditions, storm water samples will be collected at the outlets of Creek Segments B, C, D, E and F. Since PCBs, Dioxin and Mercury, the three bioaccumulative compounds associated with Sauget Area 1 source areas, are present as residual concentrations in creek bottom soils; they will be added to the monitoring parameter list. A summary of the proposed monitoring program is given below:

Summary of Proposed Storm Water Performance Monitoring Program

•	Location	Creek Segment B Outlet		
		Creek Segment C Outlet		
		Creek Segment D Outlet		
		Creek Segment E Outlet		
		Creek Segment F Outlet		
•	Frequency	Quarterly for three years		
	,	Semi-Annual for two years		
		Annual after five years		
•	Number of Samples	6		
•	Sample Media	Surface Water		
•	Analytical Parameters	SVOCs, Pesticides, PCBs an	d Cadmium, Copper, Lead, N	Nickel and Zinc
•	Analytical Methods	SVOCs	Method 8270C	
	* · · · · · · · · · · · · · · · · · · ·	Pesticides	Method 8081A	
		PCBs	Method 680	
		Cadmium	Method 7131A	
		Copper	Method 7211	
		Lead	Method 7421	
		Nickel	Method 7521	
		Zinc	Method 7951	
•	Performance Measures	Concentration Time Trends		
		Comparison to PECs:	Site-Related Bioaccumul	atives
		·	PCBs	676 ug/kg
			Dioxin No	PEC Available
			Mercury	1,060 ug/kg
		Comparison to PECs:	Bioaccumulatives	
		·	D,D,D	28 ug/kg
			Napthalene	561 ug/kg
			Heptachlor epoxide	16 ug/kg
		Comparison to 10(PECs):	Organic Non-Bioaccumu	latives
			Bis(2-ethylhexyl)phthalate	2,640 ug/kg
			2-Methylnapthalene	201 ug/kg
		Comparison to 10(PECs):	Inorganic Non-Bioaccum	ulatives
			Cadmium	4,980 ug/kg
			Copper	149,000 ug/kg
			Nickel	490 ug/kg
			Lead	1,280 ug/kg
			Zinc	4,590 ug/kg

Performance monitoring results will be evaluated at the end of five years to determine whether or not performance monitoring needs to continue. If monitored constituent concentrations are steady state, decreasing or below criteria, monitoring will be discontinued.

4.3 GROUNDWATER PERFORMANCE MONITORING

4.3.1 Rationale

Groundwater monitoring is considered an appropriate performance measure because of the potential for residual cadmium concentrations to leach from creek bottom soils to groundwater.

4.3.2 Performance Monitoring Plan

To determine whether or not cadmium is leaching from creek bottom soils to groundwater, one monitoring well will be installed in each creek segment at the location with the highest cadmium concentrations in groundwater as determined by the soil to groundwater leaching investigation described above. Monitoring wells, which will be located on the center line of the Dead Creek channel, will have ten foot long screens located from 10 to 20 ft. below the surface of adjacent flood plain. Screens placed at this depth will cover the expected range of groundwater levels, which are normally within 10 to 15 feet of ground surface (bgs). Under dry conditions, depth to groundwater can be as deep as 20 ft. below ground surface. Samples from each well will be analyzed for Cadmium to determine if residual cadmium is leaching from creek bottom soils. A summary of the proposed monitoring program is given below:

<u>Summary of Proposed Groundwater Performance Monitoring Program</u>

Location Creek Segment B

Creek Segment C Creek Segment D

Creek Segment E

Creek Segment F

Quarterly for three years
Semiannual for two years

Annual after five years

Number of Samples

Frequency

Sample Media Groundwater

Analytical Parameters Cadmium
Analytical Methods Cadmium

Performance Measures Concentration Time Trends

Comparison to Class I Groundwater Standard 5 ug/l

Performance monitoring results will be evaluated at the end of five years to determine whether or not performance monitoring needs to continue. If monitored constituent concentrations are steady state, decreasing or below criteria, monitoring will be discontinued.

Method 7131A

ECOLOGICAL RIS

MENT SUMMARY

-		
		رهنده دادان است
		7.9
		· · · · · · · · · · · · · · · · · · ·
		<u>:</u> .
		• .
		-
		. •
		,
		1.0
		**
		•
		•
		20

		14
		• •
		,
		÷'

Ecological Risk Assessment Summary

Table 1	Calculated Bioaccumulation Factors for Forage Fish
Table 2	Site-Specific, Risk-Based Concentrations for Protection of Fish
Table 3	Comparison of 95% UCL or Maximum Creek Bottom Soil Concentrations to Site- Specific, Risk-Based Concentrations for Protection of Fish
Table 4	Creek Segment Sampling Transects with Concentrations Greater Than Risk-Based Concentrations for Protection of Fish
Table 5	Creek Segment Sampling Transects with Potential Toxicity to Benthic Organisms due to PAHs

		P	F. SP COMP 1	Maximum		-	F. BP COMP 2	
			Detection Frequency in	Maximum Sediment			Detection Frequency in	Maximum Sediment
Compounds	BAF	BBAFn	Sodiment	Concentration	BAF	BSAFn	Sediment	Concentration
1,1,1-Trichloroethene	NA.	NA	0		NA	NA	0	
1,1,2,2-Tetrachioroethane 1,1,2-Trichioroethane	NA NA	NA NA	0		NA NA	NA NA	0	
1,1-Dichloroethene	NA NA	NA.	š		NA NA	NA.	ŏ	
1,1-Dichloroethene	NA	NA	ŏ		NA.	NA	ō	
1.2,3,4,6,7,8,9-OCDD	0.000845	0.00208	100	17.25	0.00195	0.00523	100	17.25
1,2,3,4,6,7,8,9-OCDF	0.008	0.0258	100	0.756	ND	ND	100	0.756
1.2,3,4,6,7,8-HpCOD 1.2,3,4,6,7,8-HpCDF	0.00325 0.00885	0.01 05 0.02 65	100 100	0.443 0.150	0.00488 ND	0.0131 ND	100 100	0.443 0.150
1.2,3,4,7,8,8-HpCDF	0.0624	0.201	100	0.0117	ND	ND	100	0.0117
1,2,3,4,7,8-HuCDD	ND	ND	67	0.0049	ND	ND	67	0.0048
1,2,3,4,7,8-HiCDF	0.108	0.347	100	0.0002	ND	ND	100	0.0002
1,2,3,6,7,8-HsCDD	0.0484	0.156	100	0.0162	ND	ND	100	0.0162
1,2,3,6,7,8 HbCDF	ND	ND	100	0.0050	ND	ND	100	0.0050
1,2,3,7,8,9-HsCDD 1,2,3,7,8,9-HsCDF	ND NO	ND ND	100 100	0.0173 0.006	ND ND	ND ND	100 100	0.0173 0.006
1.2.3.7.8-PaCDD	NO NO	NO.	100	0.0035	ND	ND	100	0.0036
1.2.3.7.8-P+CDF	ND	ND	97	0.0027	ND	ND	67	0.0027
1.2,4-Trichlorobenzene	ND	ND	•		ND	ND	0	
1.2-Dichlorobenzene	ND	NO	0		ND	ND	0	
1,2-Dichloroethene	NA	NA	•		NA	NA	0	
1.2-Dichloropropane	NA ND	NA NO	0		NA ND	NA ND	0	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	NO NO	i		ND ND	ND ND	0	
2,2'-Oxybis(1-chloropropane)_bis(ND	ŏ		ND	ND	ŏ	
2,3,4,6,7,8-HuCDF	ND	ND	100	0.0073	ND	ND	100	0.0073
2,3,4,7,8-PeCDF	0.125	0.403	100	0.0042	ND	ND	100	0.0042
2,3,7,8-TCDD	0 134	0.432	100	0.0122	ND	ND	100	0.0122
2.3,7,8-TCDF	0.909 ND	2.93 ND	100 0	0.01015	0.536 ND	1,44 ND	100 0	0.0101\$
2,4,5-T 2,4,5-TP (30/mx)	NO.	ND	ĭ		ND	ND		
2.4,5-Trichtorophenol	ND	NO	Ĭ		ND	ND	ŏ	
2,4,6-Trichtorophenol	ND	ND	ě		ND	ND	ō	
2,4-D	ND	NO	67	31	ND	ND	67	11
2,4-08	0.855	2.75	0		0.556	1.49	0	
2.4-Dichlorophenol	ND	ND	0		ND ND	ND ND	0	
2,4-Dimethylphenol 2,4-Dinitrophenol	ND ND	ND ND	0		ND ND	ND ND	0	
2,4-Dinitrotoluene	NO	ND	š		ND	ND	ŏ	
2,6-Dinitrototuene	ND	ND	ŏ		ND	ND	ŏ	
2-Chloronaphthalene	NO	ND	•		ND	ND	0	
2-Chlorophenol	NO	ND	•		ND	ND	0	
2-Hexanone	NA ND	NA ND	•		NA ND	NA ND	0	
2-Methylnaphthalene 2-Methylphenol (o-cresol)	ND	NO NO	0		ND	ND ND	0	
2-Nitroenline	ND	ND	i		ND	ND	ŏ	
2-Nitrophenol	ND	ND	ŏ		ND	ND	ŏ	
3,3'-Dichlorobenzidine	ND	ND	•		ND	ND	0	
384-Methylphenol (m&p-creeol)	ND	ND	0		ND	ND	0	
3-Nitroaniline	ND	ND	•		ND	ND	0	
4,4'-DDD 4,4'-DDE	ND 2.08	ND 6.7	0 100	3.2	ND 4.62	ND 12.4	0 100	3.2
4.4'-DDT	NO.	ND	67	14	ND	NO	67	1.4
4,6-Dinitro-2-methylphenol	ND	ND	Ö		ND	ND	0	
4-Bromophenylphenyl ether	ND	ND	•		ND	ND	0	
4-Chloro-3-methylphenol	ND	ND	•		ND	ND	0	
4-Chloroenline	ND ND	NO NO	0		ND ND	ND ND	0	
4-Chloropherylpheryl ether 4-Methyl-2-pentanone (MBN)	NA NA	NA.	ö		NA NA	NA NA	0	
4-Nitroenline	ND	ND	ĕ		ND	ND	ŏ	
4-Nitrophenol	ND	ND	ŏ		ND	ND	ŏ	
Acenephthene	ND	ND	0		ND	ND	0	
Acensphilitylene	ND	ND	0		ND	ND	0	
Acetone Aktrin	NA ND	NA ND	•		NA ND	NA ND	0	
Aldrin Alpha Chlordane	ND ND	ND ND	100	3.2	ND ND	ND ND	100	3.2
alpha-BHC	NO	ND			ND	ND	,	
Aluminum	0.00175	0.00584	100	18000	0.0038	0.0102	100	16000
Anthracene	ND	ND	•		ND	ND	0	
Antimony	ND	ND	67	1.9	ND	ND	67	1.9
Arsenic	ND	ND	100	17	ND	ND	100	17 420
Berlum Benzene	NA NA	NA NA	100	420	NA NA	NA NA	100 0	420
Benzo(s)anthracene	ND	NO.	ĕ		NO NO	ND.	ŏ	
Benzo(a)pyrene	ND	HD	ĭ		ND	ND	ŏ	
Benzo(b)fluoranthene	ND	ND	ŏ		ND	NO	ŏ	
Benzo(g.h,)perylana	ND	ND	0		ND	ND	0	
Benzo(k)Buoranthene	ND	ND	•		ND	ND	0	
Beryllum	ND	HD	100	0.62	ND	ND	100	0.82
beta-BHC	ND	NO NO	•		ND	ND	0	
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	ND ND	ND ND	0		ND ND	ND ND	0	
bis(2-Chloroethyl)ether bis(2-Ethythexyl)phthelate	0.825	2.01	ï		0.958	2.57	0	
Bromodichloromethane	NA.	NA.	Ĭ		NA NA	NA.	ŏ	
1	NA.	NA	š		NA.	NA	ŏ	

	F.F. BP COMP 1			F.F. BP COMP 2				
1			Detection	Maximum		•	Detection	Maximum
}			Frequency in	Bediment	1		Frequency in	Sediment
Compounds	BAF	BSAFR	- Bediment	Concentration	DAF	BBAF::	Sediment_	Concentration
Bromomethane (Methyl bromate) Butylbenzylphthelate	NA NO	NA ND	0		NA ND	NA ND	0	
Cadmium	ND	ND	100	2.7	ND	ND	100	2.7
Calcium	NA	NA	100	16500	NA.	NA	100	16500
Cerbezole Cerbon disulfide	ND NA	ND	0		ND	ND	0	
Cerbon tetrachioride	NA NA	NA NA	0		NA NA	NA NA	ŏ	
Chlorobenzene	NA	NA	ŏ		NA.	NA	ō	
Chlorosthene	NA	NA	D		NA.	NA	0	
Chloroform Chloromethane	NA NA	NA NA	0		NA NA	NA NA	0	
Chromium	0.0147	0.0475	100	26	0.0138	0.0371	100	26
Chrysene	ND	ND	0		ND	ND	0	-
Cis/Trans-1,2-Dichloroethene	NA NA	NA NA	0		NA.	NA	0	
cis-1,3-Dichloropropene Cobalt	NA NA	NA NA	0 100	10	NA NA	NA NA	100	10
Copper	0.0103	0.0332	100	64	0.0161	0.0432	100	64
Cyanide, Total	ND	NO	0		ND	ND	0	
Delepon Decachlorobiphenyl	ND ND	NO NO	0		ND ND	NO NO	0	
deta-BHC	ND	ND ND	0		ND	ND ND	0	
Dibenzo(s,h)enthracene	ND	ND	ŏ		0.378	1.01	ŏ	
Dibenzofuran	ND	ND	0		ND	NO	0	
Dipromochioromethane	NA 0.0922	NA O 707	0		NA ND	NA NO	0	
Dicambe Dichlorobiphenyl	0.0022 ND	0.297 ND	0		ND ND	ND ND	0	
Dichloroprop	0.0479	0.154	ŏ		ND	ND	ō	
Dieldrin	ND	ND	67	0.5	NO	ND	67	0.5
Distriyiphthelate Dimethylphthelate	0.0792 ND	0.255 ND	0		0.154 ND	0.414 ND	0	
Dimetrytphthetate Di-n-butytphthetate	ND ND	ND ND	0		MD	ND ND	0	
Di-n-octylphthelate	ND	ND	ŏ		ND	ND	0	
Dinoseb	ND	ND	0		ND	NO	0	
Endoeutlen I Endoeutlen II	ND ND	ND ND	100 0	2.8	NO NO	ND ND	100 0	2.8
Endoculien sullate	ND	ND	67	1.4	NO NO	ND	67	1.4
Endrin	ND	ND	0		NO	ND	0	
Endrin aldehyde	ND	ND	100	22	ND	ND	100	2.2
Endrin kelone Ethylbenzene	ND NA	ND NA	33 0	0.715	NO NA	ND NA	33 0	0.715
Fluoranthene	ND	ND	ŏ		NO	ND	ŏ	
Fluorene	ND	ND	0		ND	ND	0	
Germe Chiordene	ND ND	ND ND	67	3	ND ND	ND ND	47	3
gamma-BHC (Lindane) Heptachlor	ND ND	NO NO	33 0	0.16	ND ND	ND ND	33 0	0.16
Heptachior eposide	ND	NO	33	0.2	ND	ND	33	0.2
Heptachlorobiphenyl	ND	NO	o o		ND	ND	0	
Hexachiorobenzene Hexachiorobiphenyl	NO 2.26	NO 7.33	0		1.98	ND 5.27	0	
Hexachiorobutadiana	ND ND	ND	ŏ		ND	ND		
Hexachiorocyclopentadiene	ND	ND	Ó		ND	ND	0	
Hemchioroethane	ND ND	ND	0		ND	ND	0	
Indeno(1,2,3-od)pyrene Iron	NA	ND NA	0 100	38000	0.225 NA	0.604 NA	100	38000
Isophorone	ND	ND		30000	ND	NO	0	3000
Lead	ND	NO	100	58	ND	NO	100	54
Magneskim Manganese	NA NA	NA NA	100 100	5800 1400	NA NA	NA NA	100 100	5600 1400
MCPA_(4-chloro-2-methylphenox		3.54		1400	1.17	3.14	.~	1-00
MCPP_2-(4-chloro-2-methylpheno	ND	ND	Ö		ND	NO	0	
Mercury	0.419	1.35	100	0.16	4.84	13	100	0.16
Methoxychior Methylene chloride (Dichlorometh)	ND NA	ND NA	0		ND NA	ND NA	0	
Molybdenum	NA.	NA.	100	0.82	NA.	NA.	100	0,92
Monochlorobiphenyl	ND	NO	0	_	ND	ND	0	
Naphthalene Maket	ND NO	ND ND		- .	ND	ND	0	
Nickel Nirobenzene	ND NO	NO NO	100 Q	54	ND ND	ND NO	100 Q	54
n-Nitrosodi-n-propylamine	ND	ND	ŏ		ND	NO	ŏ	İ
N-Nitroeodiphenylemine/Diphenyls	ND	ND	0		ND	ND	0	
Nonachiorobiphenyl Ortechiorobiphenyl	ND ON	ND ND	0		ND ND	NO NO	0	
Octachlorobiphenyl Pentachlorobiphenyl	0.9	NO 2.9	ö		ND ND	ND ND	0	
Pentachiorophenol	0.00272	0.00877	0		0.00124	0.00332	ō	
pH	NA NO	NA	100	7.06	NA.	NA	100	7.06
Phononthrone Phonol	ND ND	ND ND	0		ND ND	ND ND	0	
Polaseium	NA NA	NA NA	100	2200	NA NA	NA NA	100	2200
Pyrene	ND	NO	0		ND	ND	0	
Selenium	0.394	1.27	0		ND	ND	0	
Silver	ND NA	NO NA	33	0.79	ND NA	ND NA	33 0	0.79
Sodium Styrene	NA NA	NA NA	0		NA NA	NA NA	0	
Tetrachiorobiphenyl	ND	ND	0		ND	ND	0	
Tetrachioroethene	NA	NA	0		NA	NA	0	
Thelium	NA NA	NA NA	0		NA NA	NA NA	0	
Totuene Totaphene	NA ND	NA ND	0		NA ND	NA ND	0	
trane-1,3-Dichloropropene	NA.	NA	ŏ		NA	NA.	ŏ	
Trichloroblphenyl	ND	ND	0		ND	ND	o	
Trichloroethene	NA NA	NA	0		NA NA	NA	0	
Venedium Vinyl chloride	NA NA	NA NA	100 0	40	NA NA	NA NA	100 0	40
Xylenes, Total	NA.	NA.	ö		NA NA	NA NA	ö	
Zinc	0.0779	0.251	100	370	0.107	0.288	100	370

				F.F. BP COMP 1				F. BP COMP 2	
				Detection	Maximum			Detection	Maximum
ı				Frequency in	Bediment			Frequency in	Sediment
	Compounds	BAF	BSAFn	Sediment	Concentration	BAF	BSAFn	Sediment	Concentration

			F.F. BP COMP 3			7	F. CS B COMP 1	
			Detection Frequency in	Meximum Sediment			Detection Frequency in	Maximum Sediment
Compounds	BAF	BBAFn	Bediment	Concentration	BAF	BBAFn	Sediment	Consentration
1,1,1-Trichloroethane	NA	ŇĀ	•		NA	NA	0	
1,12,2-Tetrachioroethane	NA	NA	0		NA NA	NA	0	
1,1,2-Trichloroethane 1,1-Dichloroethane	NA NA	NA NA	0		NA NA	NA NA	0	
1,1-Dichlorosthene	NA.	NA.	Ö		NA.	NA	ŏ	
1,2,3,4,6,7,8,9-OCDD	0.00172	0.00521	100	17.25	0.000718	0.00527	100	3420
1.2.3.4.6.7.8.9-OCDF	0.00236	0.00714	100	0.755	0.000818	0.006	100	1130
1.2,3,4,6,7,8-HpCDD	0.00434	0.0131	100	0.443	0.000015	0.00588	100	307
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND	ND ND	100 100	0.159 0.0117	0.000642	0.00618	100 100	186 13.1
1.2,3,4,7,8-HsC00	ND	ND	67	0.0049	0.00323	0.0237	100	2.31
1,2,3,4,7,8-HsCDF	0.0573	0.173	100	0.0092	0.00226	0.0166	100	6.41
1,2,3,6,7,8-HsiCDO	ND	ND	100	0.0162	0.00379	0.0278	100	13.2
1,2,3,5,7,8-HsCDF	ND	ND	100	0.0059	0.00236	0.0173	100	2.54
1,2,3,7,8,9+6:COD 1,2,3,7,8,9+6:COF	ND ND	ND ND	100 100	0.0173 0.006	0.0019 ND	0.014 ND	100 100	7,54 0.119
1,2,3,7,8-PeCOD	ND	NO.	100	0.0035	0.0149	0.108	100	1.97
1,2,3,7,8-PeCDF	ND	ND	67	0.0027	0.00#22	0.0678	100	0.842
1,2,4-Trichlorobenzene	NO	ND	0		ND	ND	33	770
1,2-Dichlorobenzene	ND	ND	0		ND	ND	33	370
1,2-Dichloroethene	NA.	NA	0		NA.	NA	0	
1,2-Dichloropropane 1,3-Dichlorobenzene	NA ND	NA ND	0		NA ND	NA ND	0	
1,3-Olchioroperizene 1,4-Dichioroperizene	ND ND	ND	Ö		ND ND	ND ND	0 6 7	1000
2,2'-Oxybis(1-chloropropane)_bis(ND	ND	ŏ		NO	ND	ő	,
2,3,4,6,7,8-Hs/CDF	ND	ND	100	0.0073	0.00233	0.0171	100	3.91
2.3,4,7,8-PeCDF	ND	ND	100	0.0042	0.0138	0.102	100	1.28
2,3,7,8-TCDD	ND	ND	100	0.0122	0,0797	0.518	33	0.264
2,3,7,8-TCDF 2,4,5-T	0.806 ND	1.83 ND	100 0	0.01015	0.179 NA	1.31 NA	100	0.811
2,4,5-TP (Silver)	ND	ND	ŏ		NA.	NA.	9	
2,4,5-Trichlorophenol	ND	ND	ŏ		ND	ND	ō	
2,4,6-Trichlorophenol	ND	ND	0		ND	ND	0	
2,4-D	ND	ND	67	11	NA	NA	0	
2,4-0B	ND	ND ND	0		NA ND	NA ND	0	
2,4-Dichlorophenol 2,4-Dimetrylphenol	ND ND	NO NO	0		ND	ND ND	0	
2,4-Dinitrophenol	ND	ND	ŏ		ND	ND	ŏ	
2,4-Dinitrotoluene	NO	ND	0		ND	NO	0	
2,6-Dinitrotoluene	ND	ND	0		NO	NO	0	
2-Chloronaphtheiene 2-Chlorophenol	DN GN	ND GM	0		DN	OM OM	0	
2-Hermone	NA NA	NA.	ŏ		NA NA	NA.	0 33	21
2-Methylnephthelene	ND.	ND	ŏ		ND.	ND	~	
2-Methylphenol (o-cresol)	ND	ND	ò		ND	ND	ō	
2-Nitroenline	ND	ND	0		ND	ND	0	
2-Nitrophenol	ND	NO	0		ND	ND	0	
3,3'-Dichlorobenzidine 3&4-Methylphenol (m&p-creeol)	ND ND	ND ND	0		ND ND	ND ND	0	
3-Nitroenline	ND	ND	ŏ		ND ND	ND	ŏ	
4,4'-000	ND	ND	ō		NA	NA	33	150
4,4'-DDE	5.08	15.3	100	3.2	NA.	NA	0	
4,4'-DDT	ND	NO	67	1.4	NA	NA	0	
4,6-Dinitro-2-methylphenol 4-Bromophenylphenyl ether	ND ND	ND ND	0		ND ND	ND ND	0	
4-Chloro-3-methylphenol	ND ND	ND	ŏ		ND	ND ND	0	
4-Chiorosniline	NO	ND	ŏ		ND	ND	33	830
4-Chlorophenylphenyl ether	ND	ND	0		ND	ND	0	
4-Methyl-2-pentanone (MIBIC)	NA.	NA	0		NA .	NA	0	
4-Nitrosniline 4-Nitrophenol	ND	ND	0		ND	ND	0	
4-Nitrophenol Acenephthene	ND ND	ND ND	0		NO ND	ND ND	0	
Acenephthylene	ND	ND	ŏ		ND	ND	ŏ	
Acetone	NA	NA	Ô		NA	NA	0	
Aldrin	ND	ND	0		NA	NA	100	1100
Alpha Chlordene	NO NO	ND	100	3.2	NA NA	NA	0	
siphe-BHC Aluminum	0.00321	ND 0.0097	100	16000	0.00109	NA 0.00803	0 1 0 0	12000
Anthrisosne	0,00321 ND	ND	100	19000	NO NO	NO NO	100	12000
Antimony	ND	ND	67	1.9	ND	ND	100	8.9
Arsenic	ND	ND	100	17	ND	ND	100	38
Berium	NA	NA	100	420	NA	NA	100	3300
Benzene	NA NA	NA	0		NA NA	NA	0	
Benzo(a)enthracene Benzo(a)pyrene	ND ND	ND ND	0		ND ND	ND ND	100	870 1200
Benzo(b)fluoranthene	NO NO	NO NO	0		ND	ND ND	100 100	2000
Benzo(g,h,l)pentene	ND	ND	ŏ		NO NO	ND ND	100	1800
Benzo(k)fluorenthene	ND	ND	ŏ		ND	ND	100	1800
Berythan	ND	ND	100	0.82	ND	ND	•	
bets-BHC	ND	ND	0		NA	NA	0	
bis(2-Chloroethoxy)methene	ND	ND	0		ND	ND	0	
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalete	ND ND	ND ND	0		ND ND	ND ND	0 33	3000
Bromodichioromethene	NA NA	NA NA	0		NA NA	NA NA	33 0	3,000
			•		NA NA		•	

			F. BP COLD 1			E :	F. CS 8 COMP 1	
		•	Detection	Maximum	i	۲.	Detection	Meximum
			Frequency in	Sediment	ł		Frequency in	Bodiment
Compounds	BAF	88AFn_	Perlment	Concentration	BAF	BBAFn	Sediment	Concentration
Bromomethane (Methyl bromide)	NA.	NA	0		NA	NA	0	
Butylbenzylphthalate	ND	ND	•		ND	ND	0	
Cadmium	NO	ND	100	2.7	ND	ND	100	25 180000
Calcium Carbazole	NA NO	NA ND	1 9 0	16500	NA ND	NA ND	100 0	180000
Cerbon disuffide	NA.	NA.	ŏ		NA.	NA NA	Ö	
Carbon tetrachloride	NA.	NA.	š		NA.	NA.	ŏ	
Chlorobenzene	NA	NA.	ě		NA NA	NA.	100	51.5
Chloroethane	NA	NA	ŏ		NA	NA	0	
Chloroform	NA	NA	Ö		NA	NA	0	
Chloromethane	NA	NA	•		NA.	NA	0	
Chromium	0.012	0.0362	100	26	0 00613	0.045	100	78
Chrysens	ND	ND	•		ND	ND	100	1800
Cis/Trans-1,2-Dichloroethene	NA	NA	•		NA NA	NA	0	
cis-1,3-Dichloropropene Cobell	NA NA	NA NA	0		NA NA	NA NA	.0	
Соррег	0.0351	NA 0,108	190 160	10 64	0.0012	NA 0.00878	100 100	12 11000
Cyenide, Total	ND ND	ND	190	•	ND ND	ND	0	11000
Delepon	ND	ND	ï		NA.	NA	ŏ	
Decachiorobiphenyl	ND	ND	ī		ND	ND	67	3400
delta-BHC	ND	ND	ŏ		NA.	NA.	o.	
Dibenzola hienthracene	ND	ND	ŏ		ND	ND	ō	
Dibenzoturan	NO	ND	Ō		ND	ND	0	
Dibromochloromethene	NA	NA	0		NA.	NA	0	
Dicamba	ND	ND	•		NA	NA	0	
Dichlorobiphenyl	ND	ND	0		ND	ND	67	640
Dichloroprop	NO	NO	•		NA	NA	0	
District the state	ND	ND 0.453	67	0.5	NA 0.0689	NA 0 FOE	0	
Diethylphthalate	0.15 ND	0.453 ND			0.0689 ND	0.505 ND	0	
Dimethylphthelate Dischusioshithelate	ND ND	ND ND			ND ND	ND ND	0	
Di-n-butylphthelate Di-n-octylphthelate	ND	NO NO	•		ND ND	ND ND	0	
Oincest Cincest	NO	ND	š		NA.	NA.	0	
Endosullan I	ND	ND	100	2.0	NA	NA	ő	
Endoeullen II	ND	ND	0		NA.	NA	ō	
Endosullan sulfate	ND	ND	67	1.4	NA	NA	100	130
Endrin	NO	ND	•		NA.	NA	0	
Endrin aldehyde	NO	ND	100	2.2	NA	NA	33	520
Endrin ketone	ND	ND	23	0.715	NA	NA	0	
Ethythenzene	NA	NA	0		NA	NA	0	
Fluoranthene	ND	ND	0		ND	ND	100	2000
Fluorene Gamma Chlordene	ND ND	ND ND	<u>•</u>	а	ND NA	ND NA	0 33	720
gamma-BHC (Lindane)	ND	NO NO	67 23	0.16	NA NA	NA NA	33 0	720
Heptechlor	ND	NO.	7	0.10	NA.	NA.	33	500
Heptachior eposide	ND	NO	30	0.2	NA	NA.	33	0.2
Heptachlorobiphenyl	ND	ND	~		0.182	1.33	100	5300
Hemchlorobenzene	ND	ND	Ö		ND	ND	0	
Hexachlorobiphernyl	ND	ND	0		0 0926	0.879	100	21000
Hexachlorobutadiene	ND	ND	0		ND	ND	0	
Herachlorocyclopentadiana	NO	ND	0		ND	ND	0	
Hemchloroethene	ND	ND	0		ND	ND	0	
Indeno(1,2,3-cd)pyrene	NO	ND	0	*****	ND	ND	67	1300
Iron	NA ND	NA ND	100	38000	NA ND	NA ND	100	29000
Inophorone Leed	0.0123	0.0373	180	50	0.00143	0.0105	100	1000
Magnesium	NA.	NA	100	5600	NA NA	NA.	100	20000
Manganese	NA.	NA.	100	1400	NA.	NA	100	245
MCPA_(4-chloro-2-methylphenox)	ND	ND	0		NA	NA	0	
MCPP_2-(4-chloro-2-methylpheno	ND	ND	Ô		NA.	NA	0	
Mercury	ND	ND	100	0.16	ND	ND	100	1.5
Methoxychlor	ND	ND	0		NA	NA	0	
Methylene chloride (Dichloromethi	NA	NA	0		NA	NA	0	
Molybdenum	NA NO	NA.	100	0.92	NA ND	NA	100	7
Monochiorobiphenyl	ND ND	ND ND	0		ND ND	ND ND	0 33	380
Naphthelene Nickel	ND ND	ND ND	100	54	מא	ND ND	33 100	380 500
Nitrobenzene	ND	ND ND	100	34	ND	ND	0	300
n-Nitroeodi-n-propylamine	ND	NO	ŏ		ND	ND	0	
N-Nitroeodiphenylamine/Diphenyla		NO	ě		ND	ND	ő	
Nonachlorobiphenyl	ND	NO	ŏ		ND	ND	ŏ	
Octachlorobiphenyl	NO	ND	ō		0.111	0.815	33	1800
Pentachiorobiphenyl	NO	ND	ŏ	į	0.0595	0.436	100	66000
Pentechlorophenol	ND	ND	0		ND	ND	100	220
pH	NA	NA	100	7.06	NA.	NA	100	6.72
Phenanthrene	ND	NO	0		ND	ND	100	830
Phenol	NO	ND		:	ND	ND	0	
Potessium	NA NA	NA	100	2200	NA NA	NA ND	100	2400
Pyrene	NO	ND	0		ND	ND	100	2400
Selenium	0.367 ND	1,17 NO	<u>.</u>	0.74	ND ND	ND ND	100	5.1 15.
Silver Sodium	ND NA	ND NA	33 0	0.79	ND NA	NA NA	100 0	15
Styrene	NA NA	NA NA	Š		NA NA	NA NA	0	
Tetrachlorobiphenyl	ND	NO.	š		0.0547	0 401	100	96000
Tetrachloroethene	NA.	NA.	š		NA.	NA.	0	
Thelliam	NA.	NA.	Š		NA.	NA.	33	2.1
Toluene	NA.	NA.	Ĭ		NA.	NA.	33	20
Toraphene	ND	ND	ě		NA	NA	õ	
trans-1,3-Dichioropropens	NA	NA	ě		NA	NA	ŏ	
Trichlorobiphenyl	ND	ND	ŏ		0.0299	0.219	100	30000
Trichloroethene	NA	NA	š		NA	NA	ō	
Vanadium	NA	NA	180	40	NA	NA	100	41
Vinyl chloride	NA	MA	•		NA	NA	0	
Xylenes, Total	NA	NA	•		NA	NA	0	
Zinc	0.104	0.314	100	370	0 00952	0.0699	100	7900

			F.F. BP COMP 8			F.	F. CS B COMP 1	
1	1		Detection	Meximum			Detection	Meximum
			Frequency in	Sediment			Frequency in	Sediment
Compounds	RAE	BRASE	Badlmani	Concentration	MAE	ROAF-	Sections	Concentration

			F. C8-0 COMP 1 Detaction	Maximum	1		REF 1 COMP 1 Detection	Maximum
	1		Frequency in	Sediment			Frequency in	Sediment
ompounde 1,1-7richloroethene	BAF NA	BBAFn NA	Sediment 0	Concentration	BAF NA	B8AFn NA	Sediment	Concentration
1,2.2-Tetrachiorosthane	NA NA	NA NA	ŏ		NA NA	NA.	ŏ	
1,2-Trichloroethene	NA	NA	Ö		NA	NA	0	
1-Dichloroethane	NA	NA	6		NA.	NA	0	
1-Dichloroethene	NA	NA	.0		NA	NA	0	
2.3,4,6,7,8,9-OCDD	0.00132	0.008	100	200	0.0053	0 00357	100	4.95
2.3,4,6,7,8,9-OCDF 2,3,4,6,7,8-HpCDD	0.00102	0.00462	100 100	94 21,5	0.0121	0.00616 0.00762	100 100	0.136 0.162
2,3,4,6,7,8-HpCOF	0.00158	0.00719	100	12.1	ND	ND	100	0.0307
2.3,4,7,8,9-HpCOF	0.00263	0.0119	100	0.538	ND	ND	50	0.003
2,3,4,7,8-HsCDD	0.012	0.0545	100	0.107	ND	ND	100	0.0018
2,3,4,7,8-HuCDF	0.0119	0.0538	100	0.297	0.207	0.139	50	0.0029
2.3,8,7,8-HuCDD	0.0145	0.0657	100	0.567	0.129	0.0668	100	0.0048
2,3,6,7, 6 16/CDF	0.0068	0.0300	100	0.176	ND	ND	0	
2,3,7,8,9-HiCOD	0.00529	0.024	100	0.363	ND	ND	100	0.0048
2,3,7,8,9-H±CDF 2,3,7,8-P±CDD	ND 0,0449	ND 0.204	100 100	9.008 9.0811	ND NO	ND ND	0	
2,3,7,8-PeCOF	ND ND	ND	100	0.0678	ND ND	ND	ŏ	
2,4-Trichlorobenzene	ND	NO			ND	ND	ŏ	
2-Dichlorobenzene	ND	NO	ŏ		ND	ND	ō	
2-Dichloroethene	NA	NA	ŏ		NA	NA	0	
?-Dichloropropane	NA	NA	0		NA	NA	0	
3-Dichlorobenzene	ND	ND	0		ND	ND	0	
4-Dichlorobenzene	ND	ND	0		ND	NO	0	
2-Oxybis(1-chloropropane)_bis(NO.	ND	0		ND	ND	0	
3,4,8,7,8-H±CDF	88800.0	0.0312	100	0.233 0.0792	ND	ND ND	50 0	0.0016
3,4,7,8-PeCDF 3,7,8-TCDD	0.0415 0.247	0,1 88 1,12	100 33	0.0792	ND 0.222	ND 0,15	100	0.0035
3,7,6-TCDF	0.37	1.12	100	0.0963	2.22	1,5	100	0.0033
4,5-T	ND	NO.	,0		ND	ND		
4,5-TP (Silves)	ND	ND	ŏ		ND	ND	ō	
4,5-Trichlorophenol	NO	ND	•		ND	ND	0	
4,8-Trichlorophenol	NO	ND	0		ND	ND	0	
4-D	ND	NO	0		NO	ND	50	12
4-DB	ND	ND	0		1.08	0.728	0	
4-Dichlorophenol	ND ND	ND ND	•		ND ND	ND ND	0	
4-Dimethylphenol 4-Dinitrophenol	ND ND	ND			ND	ND	0	
I-Dinitrotoluene	ND	ND	š		ND	ND	ŏ	
-Dinitrospiuene	NO	ND	100	45	ND	ND	50	40
Chloronephthalene	ND	ND	0		ND	ND	0	
Chlorophenol	ND	ND	•		ND	ND	0	
iemnone	NA	NA	0		NA.	NA	0	
Methylmaphthalene	ND	ND	•		ND	ND	0	
Methylphenol (o-cresol)	ND	ND	0		ND	ND	0	
Nitroeniline Nitrophenol	ND NO	ND NO	0		ND ND	ND ND	0	
3'-Dichlorobenzidine	NO.	ND ND	ŏ		ND	ND	0	
L4-Methylphenol (m&p-cresol)	ND	NO.	š		ND	ND	ŏ	
Nitroentine	ND	NO	Ď		ND	ND	ŏ	
4'-000	ND	ND	0		ND ND	ND	0	
4'-DDE	ND	ND	100	20	0.950	0.645	0	
4'-DDT	ND	ND	0		ND	ND	0	
8-Dinitro-2-methylphenol	ND	ND	•		ND	ND	0	
Bromophenylphenyl ether	ND ND	ND ND	0		ND ND	ND ND	0	
Chloro-3-methylphenol Chlorosniline	ND ND	NO NO	i		ND	ND ND	ů	
Chlorophenylphenyl ether	ND	NO NO	ě		ND	ND	0	
Methyl-2-pentanone (MBK)	NA.	NA.	i		NA.	NA	ŏ	
Nitroentine	ND	ND	ŏ		ND	ND	ō	
Nitrophenal	NO	ND	•		ND	ND	0	
enaphthene	ND	NO	0		ND	ND	0	
enaphthylane	MD	ND	0		ND	ND	0	***
cetone Idrin	NA ND	NA ND	100 100	190 11	NA ND	NA ND	50 0	180
oren phe Chlordene	ND	ND ND	100	26	ND	ND	0	
phe-BHC	ND	NO.	9		ND	ND	ŏ	
uminum	0.00157	0.00713	180	18000		D.000648	100	15000
thracene	ND	ND	0		ND	ND	o	
itmony	ND	ND	Ō		ND	ND	50	1.3
senic	MO	NO	100	17	ND	ND	100	
wium	NA.	NA	100	400	NA	NA	100	230
enzene	NA	NA.	•		NA NA	NA	0	
enzo(s)enthracene	ND	ND ND	35 30	420 560	ND ND	ND ND	0	
lenzo(s)pyrene	ND	ND ND		560 \$70	ND ND	ND ND	-	
enzo(b)fluoranthene	ND ND	ND ND	100 23	970 960	ND	ND	0	
enzo(g_h,@perylene enzo(k)iluoranihene	ND ND	ND ND	100	980	ND	ND	ŏ	
enzo(k)muoramene enylium	NO NO	ND	9		ND	ND	100	0.6
eta-BHC	NO	ND	Ĭ		ND	ND		
is(2-Chloroethoxy)methane	NO NO	NO	Ĭ		NO	ND	ŏ	
le(2-Chloroethyl)ether	ND	MD	ŏ		NO	ND	ŏ	
	0.0684	0,311	25	1200	0.904	0.609	Ö	
(2-Ethythouy1)phtholoto	0.000	ااجرن	-	1200	0.500	0.000	•	
s(2-Ethytheigf)phthelete romodichloromethene	NA NA	NA.	7	1200	NA.	NA.	ŏ	

		F	F. CS-D COMP 1			F.	F. REF 1 COMP 1	
			Detection	Meximum	Ì		Detection	Maximum
Compounds	BAF	B8AFn	Frequency in Sediment	Sediment Concentration	BAF	BSAFn	Frequency in Sediment	Sediment Concentration
Bromomethene (Methyl bromide)	NA NA	NA NA	C	Concentration	NA NA	NA NA	D D	Concentration
Butythenzylphthelate	ND	ND	ā		ND	ND	ō	
Cadmium	ND	ND	100	15	NO	ND	100	0.38
Calcium	NA ND	NA ND	100 0	30000	NA ND	NA ND	100	18000
Carbezole Carbon disulfide	NA NA	ND NA			ND NA	NA NA	0	
Carbon tetrachloride	NA.	NA.	ŏ		NA NA	NA.	ŏ	
Chlorobenzene	NA	NA	0		NA	NA	0	
Chloroethane	NA	NA	0		NA	NA	0	
Chloroform	NA.	NA	0		NA NA	NA	0	
Chloromethane Chromium	NA 0.00607	NA 0.0275	100	67	NA 0.0126	NA 0.0085	0 100	21
Chrysene	ND	ND	100	7 9 Q	ND	ND	0	•••
Cls/Trans-1,2-Dichloroethens	NA	NA	0		NA	NA	0	
cis-1,3-Dichloropropene	NA	NA	0		NA.	NA	0	
CobeR Copper	NA 0.00251	NA 0.0114	100 100	12 740	NA 0.0243	NA 0.0184	100 100	9.8 20
Cyanide, Total	ND ND	NO.		,	ND ND	ND	,	20
Datepon	NO	ND	Ď		ND	ND	ō	
Decachlorobiphenyl	ND	ND	87	230	ND	ND	0	
delte-BHC	ND	ND	67	16	ND	ND	0	
Dibenzo(s,h)enthracene Dibenzoturan	0.0206 ND	0.0933 ND	0		ND ND	ND ND	0	
Dibromochioromethane	NA.	NA.	ŏ		NA NA	NA NA	ŏ	
Dicambe	ND	ND	33	13	NO.	ND	ŏ	
Dichlorobiphenyl	ND	NO	0		ND	ND	ō	
Dichloroprop	ND	ND	0		0.0451	0.0304	0	
Dieldrin Dietministratus	ND 0.0111	ND 0.0504	0		1,29 0,0957	0.867 0.0644	0	
Distriyiphtsalate Dimetryiphthelate	ND ND	0.0504 ND	Ö		0.0957 ND	0.0644 ND	0	
Di-n-butylphthaiste	ND	NO	ŏ		ND	NO	ŏ	
Di-n-octytphthelate	ND	ND	0		ND	ND	ō	
Dincest	ND	ND	0		ND	NO	0	
Endosullan II	ND ND	ND ND	0		ND ND	ND ND	0	
Endocullan sulfate	ND	ND ND	ŏ		NO NO	NO	ŏ	
Endrin	ND	ND	ŏ		ND	ND	ō	
Endrin aldehyde	ND	ND	33	16	ND	ND	0	
Endrin ketone	ND NA	ND NA	33 0	5.5	ND	ND	0	
Etrythenzene Fluoranthene	NA ND	ND ND	100	1200	NA ND	NA ND	0	
Fluorene	ND	ND	0	,240	ND	ND	ŏ	
Gemme Chlordene	ND	ND	100	49	ND	NO	0	
gemma-BHC (Lindene)	ND	ND	0		ND	ND	0	
Haptechior Haptechior spoxide	NO NO	ND ND	0		ND ND	ND ND	0	
Heptschlorobiphenyl	0.361	1.64	ŏ		NO.	ND	0	
Heachlorobenzene	ND	ND	ŏ		ND	ND	ō	
Hexachiorobiphenyt	1.53	6.83	100	400	ND	ND	0	
Hemchlorobutadiene	ND ND	ND ND	0		ND ND	ND ND	0	
Heachlorocyclopentatione Heachlorosthane	ND ND	ND	0		ND ND	ND ND	0	
Indeno(1,2,3-od)pyrene	NO	NO	ŏ		ND	NO	ŏ	
iron	NA	NA,	100	25000	NA	NA	100	22000
teophorone	ND	ND	0		ND	ND	0	
Leed	0.00218	0.0000	100	260 7500	NO NO	ND	100	23
Magnesium Manganese	NA NA	NA NA	100 100	7500 320	NA NA	NA NA	100 100	6500 770
MCPA_(4-chloro-2-methylphenox)	NO	ND	0		1.08	0.724		***
MCPP_2-(4-chloro-2-methylpheno	ND	NO	0		ND	ND	ō	
Mercury	0.0426	0.183	100	0.5	0.952	0.641	100	0.063
Methoxychlor Methylene chloride (Dichlorometh	ND NA	ND NA	0		ND	ND NA	0	
Molybdanum	NA NA	NA NA	ŏ		NA NA	NA NA	100	0.49
Monochlorobiphenyl	ND	ND	ŏ		NO.	ND	0	J. 75
Naphthalene	ND	ND	0		ND	ND	0	
Nickel	NO.	ND	100	260	ND	ND	100	23
Nitrobenzene n-Nitrosodi-n-propylamine	ND ND	ND ND	0		ND ND	ND ND	0	
N-Nitrosodiphenylamine/Diphenyla	ND	ND	0		ND ND	ND	0	
Nonechlorobiphenyl	ND	ND	ő		ND	ND	ŏ	
Octachlorobipherryl	ND	ND	ō		ND	ND	0	
Pentachlorobiphenyl	1.07	4.85	100	620	ND	ND	0	
Pentachlorophenol old	0.000773 NA	0.00351 NA	33 100	3.9 6.84	0.00382	0.00257 NA	50 100	1.9
pH Phenenthrens	HD.	NA ND	100 33	410	NA ND	NA NO	100 0	7.31
Phenol	ND	ND	õ	~.•	ND ND	ND	ö	
Potsarken	NA	NA	100	3200	NA	NA	100	2300
Pyrane	ND	ND	100	1100	ND	ND	0	
Selenium	0.374	1.7	0		NO NO	ND	0	
Sever Sodium	NO NA	ND NA	0		NO NA	ND NA	0	
Styrene	NA NA	NA.	ŏ		NA NA	NA NA	ŏ	
Tetrachlorobiphenyl	2.94	13.3	ŏ		ND	ND	ŏ	
Tetrachioroethene	NA	NA	0		NA	NA	ŏ	
Theflum	NA.	HA	O		NA	NA	0	
Toluene	NA NO	NA	0		NA NA	NA NO	0	
Totaphene trans-1,3-Dichloropropene	ND NA	ND NA	0		NO.	ND	0	
Trichlorobiphenyl	0.323	1.46	0		NA ND	NA ND	0	
Trichloroethene	NA NA	NA.	ŏ		NA.	NA.	ö	
Vanadium	NA	NA	100	51	NA.	NA	100	36
Vinyl chloride	NA.	NA	0		NA	NA	0	
Xylenes, Total	NA 0.0007	NA 0.400	.0	4744	NA .	NA 0.100	0	
Zinc	0.0227	0,103	100	2700	0.192	0.129	100	95

Table A1 Calculated Mossournulation Factors for Forage Fish

-

		F	F. CS-D COMP 1			F.	F. REF 1 COMP 1	
			Detection	Maximum	1		Detection	Meximum
			Frequency in	Bediment			Frequency in	Sediment
Compounds	BAF	BSAFR	Sediment	Concentration	BAF	B8AFn	Sediment	Corcentration

		F.F	REF 2 COMP 1		1	1.1	REF 2 COMP 2	
			Detection Expression	Maximum	į		Detection Empression in	Meximum Bediment
Compounds	DAF	B8AFn	Frequency in Sediment	Sediment Concentration	BAF	B8AFn	Frequency in Sediment	Concentratio
1,1,1-Trichloroethene	NA	NA	0		NA	NA	0	
.1.2.2-Tetrachioroethene	NA	NA	0		NA.	NA	0	
.1,2-Trichloroethene	NA	NA	0		NA.	NA	0	
I,1-Dichioroethene	NA	NA	0		NA NA	NA	0	
1.1-Dichlorosmene	NA 0.00639	NA 0,0138	0 100	8.57	0.00372	NA 0.00557	0 100	8.57
1.2.3.4.6.7.8.9-OCDF	0.297	0.489	100	0.107	0.0231	0.0346	100	0.107
1,2,3,4,6,7,8-HpCOD	0.0351	0.0579	100	0.14	0.0172	0.0257	100	0.14
1,2,3,4,6,7,8-HpCDF	0.0936	0.154	100	0.0263	ND	ND	100	0.0283
1.2,3,4,7,8,9-HpCDF	ND	NO	0		ND	ND	0	
1,2,3,4,7,8-HiGDD	ND	ND	50	0.0021	ND	ND	50	0.0021
1,2,3,4,7,8-HbCDF	0.329 0.181	0.544 0.296	50	0.003 0.004	ND 0.184	ND 0.275	50	0.003 0.004
1,2,3,6,7,8-HsCDD 1,2,3,6,7,8-HsCDF	ND ND	NO	100 50	0.004	NO.184	0.275 ND	100 50	0.0013
2.3.7,8,9-HsCDD	ND	ND	100	0.00505	ND	NO NO	100	0.00505
1.2.3.7.8.9-HsCDF	ND	ND	0		ND	ND	0	0.0000
1.2,3,7,8-PeCOD	0,686	1.14	100	0.00145	ND	ND	100	0.00145
1,2,3,7,6-PeCDF	ND	ND	50	0.0011	ND	ND	50	0.0011
1,2,4-Trichlorobenzene	ND	ND	0		ND	ND	0	
1,2-Dichlorobenzene	ND	ND	0		ND	ND	0	
1,2-Dichloroethane	NA NA	NA NA	0		NA NA	NA.	0	
1,2-Dichloropropene 1,3-Dichlorobenzene	NA ND	NA ND	0		NA ND	NA ND	0	
	ND ND	ND			NO.	ND ND	ŏ	
2,2"-Oxybis(1-chloropropane)_bis(ND	ND	ŏ		ND.	ND	ŏ	
2,3,4,6,7,8-HHCDF	ND	ND	50	0.0016	ND	ND	50	0.0016
2,3,4,7,8-PeCDF	ND	ND	50	0.0013	NO	ND	50	0.0013
2,3,7,8-TCDD	3.62	6.31	0		NO	ND	0	
2.3,7,8-TCDF	1.2	1.99 ND	100	0.0014	NO NO	ND	100	0.0014
2,4,5-T 2,4,5-TP (Silved)	ND ND	ND ND	0		NO NO	ND ND	0	
2,4,5-Trichlorophenol	ND	ND	ŏ		NO.	ND	ŏ	
2,4,8-Triohiorophenol	ND	ND	ŏ		NO	ND	ŏ	
2,4-D	ND	ND	ŏ		NO	ND	ŏ	
2,4-08	ND	ND	0		NO.	ND	•	
2,4-Dichlorophenol	ND	ND	0		NO	ND	0	
2,4-Dimethylphenol	ND	ND	0		ND	ND	0	
2,4-Dinitrophenol 2,4-Dinitrotokene	ND ND	ND ND	0		ND ND	ND ND	0	
2,8-Dinitrotoluene	ND	ND	100	14	NO NO	ND	100	14
2-Chloronaphthalene	ND	ND	0	***	ND	ND	0	
2-Chlorophenol	ND	ND	0		ND	ND	0	
2-Heranone	NA NA	NA	0		NA.	NA	0	
2-Methylnephthelene	ND	ND	0		ND	ND	0	
2-Methylphenol (o-cresol) 2-Nitrosnäine	ND ND	ND ND	0		ND ND	ND ND	0	
2-Nitrophenol	ND	ND	0		ND	ND.	,	
3,3'-Dichtorobenzidine	ND	ND	ŏ		ND	ND	ŏ	
3&4-Methylphenol (m&p-cresol)	ND	ND	Ō		ND	ND	ō	
3-Nitroenline	ND	ND	0		ND	ND	0	
4,4'-000	NO	ND	0		ND	NO	0	
4.4'-DDE	ND	ND	0		0.371	0.557	0	
4,4'-DDT 4,6-Dinitro-2-methylphenol	ND ND	ND ND	0		ND ND	ND ND	0	
4-Bromophenylphenyl ether	ND	ND	0		ND	NO NO	Ö	
4-Chloro-3-methylphenol	ND	ND	ŏ		ND	NO	ŏ	
4-Chloroeniline	ND	ND	à		ND	NO	o o	
4-Chlorophenylphenyl ether	ND	ND	0		ND	NO	0	
4-Methyl-2-pentanone (MIBIC)	NA.	NA NA	0		NA NA	NA.	0	
4-Nitroeniline 4-Nitrophenol	ND ND	ND ND	0		ND ND	ND ND	0	
Acenaphenol Acenaphenol	ND	ND	Ö		ND	ND	ŏ	
Acenephthylene	ND	ND	ŏ		ND	ND	ŏ	
Acetone	NA	NA	100	52	NA	NA	100	62
Aldrin	ND	ND	0		NO NO	ND	0	
Alpha Chlordane	ND	ND	0		NO	ND	0	
alpha-BHC	ND	ND	0		ND	ND	0	
Aluminum Anthracene	0.00516 ND	0.00852 ND	100 0	19000	0.00645 ND	0.00966 ND	100 0	19000
Antimony	ND ND	ND ND	100	4	ND ND	ND ND	100	4
Arsenic	ND ND	ND	100	7	ND ND	ND ND	100	;
Barium	NA.	NA	100	220	NA.	NA	100	220
Benzene	NA	NA	0	= -	NA	NA	0	
Benzo(a)anthracene	ND	ND	0		ND	ND	o	
Benzo(a)pyrene	ND	NO	0		NO	ND	0	
Benzo(b)fluorenthene	ND	ND	0		ND	ND	0	
Benzo(g.h.)perylene	ND	ND	0		NO	ND	0	
Benzo(k)Buoranthene	ND	ND	0	_	ND	NO	0	_
Beryllum bate-BHC	ND ND	ND ND	100	1	ND ND	ND ND	100	1
Dela-BHC Dia(2-Chioroethoxy)methane	ND ND	NO NO	0		ND ND	ND ND	0	
bis(2-Chloroethyl)ether	ND ND	ND	ŏ		ND	ND	Ö	
bis(2-Ethythexyl)phthelete	1.56	2.57	ŏ		0.55	0.825	ŏ	
Bromodichloromethene	NA.	NA	ŏ		NA NA	NA.	ŏ	

· · · · · · · · · · · · · · · · · · ·		FJ	REF 2 COMP 1				. REF 2 COMP 2	
			Detection:	Maximum			Detection	Meximum
Compounds	BAF	BBAFn	Frequency in Sediment	Sediment Concentration	BAF	BSAFn	Frequency in Sediment	Sediment Concentration
Bromomethane (Methyl bromide)	NA NA	NA NA		Consolition	NA NA	NA NA	0	Concentration
Butylbenzylphthalate	NO	NO	ō		ND	ND	o	
Cadmium Calcium	ND	ND	100	0.65	ND	ND	100	0.66
Carbazole	NA ND	NA ND	100 0	12000	NA ND	NA ND	100 0	12000
Carbon disuffide	NA	NA	ŏ		NA	NA	ŏ	
Carbon tetrachloride	NA	NA	0	'	NA	NA	0	
Chiorobenzene Chioroethane	NA NA	NA NA	0		NA NA	NA NA	0	
Chlorolorm	NA NA	NA.	ŏ		NA.	NA.	ŏ	
Chloromethene	NA	NA	•		NA	NA	0	
Chromium	0.021	0.0346	100	25	0.0224 ND	0.0336 ND	100 0	25
Chrysene Cis/Trans-1,2-Dichloroethene	ND NA	ND NA	ŏ		NA NA	NA.	Ö	
cls-1,3-Dichloropropens	NA.	NA	ŏ		NA	NA	ŏ	
Cobelt	NA	NA	100	10	NA	NA	100	10
Copper Cyanide, Total	0.0215	0.0355 ND	100	23	0.0385 NO	0.0577 ND	100 0	23
Delepon	ND ND	NO	š		ND	ND	ŏ	
Decechlorobiphenyl	ND	ND	ŏ		ND	ND	ō	
delta-BHC	ND	NO	•		ND	ND	0	
Dibenzo(a,h)enthracene Dibenzoturan	ND	ND ND	•		ND ND	ND ND	0	
Dibromochioromethane	ND NA	NA NA	ě		NA NA	NA NA	0	
Dicambs	ND	ND	ŏ		ND	ND	ō	
Dichlorobiphenyl	ND	ND	0		ND	ND	0	
Dichloroprop	ND	ND	0		ND 0.457	ND 0.000	0	
Diethrin Diethylphthelele	ND 0.111	ND 0.183			0.457 ND	0. 686 ND	0	
Dimethylphthalate	ND	ND	ŏ		ND	ND	ŏ	
Di-n-butytphthalate	MD	ND	ė.		ND	ND	D	
Di-n-octytphthalate	NO	HD	0		ND	NO	0	
Dinoseb Endosullan I	NO ND	ND ND	0		ND ND	NO ND	0	
Endoeullan ii	ND	ND	ě		ND	ND	ŏ	
Endosullan sullate	ND	ND	0		ND	ND	0	
Endrin	ND	ND	•		ND ND	ND ND	0	
Endrin aldehyde Endrin ketone	ND ND	ND ND			ND ND	ND ND	0	
Ethylbenzene	NA NA	NA.	ŏ		NA.	NA	ŏ	
Fluoranthene	ND	NO	•		NĐ	ND	0	
Fluorene	ND	ND	0		ND	ND	0	
Gamme Chlordane gamme-BHC (Lindane)	ND ND	ND ND	0		0.867 ND	1 ND	0	
Heptachlor	ND	NO.	š		ND	ND	ŏ	
Heptschior eposide	ND	ND	0		ND	ND	0	
Heptachlorobiphenyl	ND	ND	0		ND ND	ND	0	
Hexachiorobenzene Hexachiorobiphenyl	ND ND	ND ND	Š		ND ND	ND ND	0	
Hexachlorobutadiene	ND	ND	ě		ND	ND	ŏ	
Hexachlorocyclopentadiene	ND	ND	0		ND	ND	0	
Hexachloroethene	NO	ND	0		ND ND	ND	0	
Indeno(1,2,3-oti)pyrene Iron	ND NA	ND NA	0 100	24000	NA NA	ND NA	e 100	24000
leophorone	ND	ND	0		ND	ND	0	
Leed	ND	NO	100	26	0.0174	0.0261	100	26
Magneelum	NA.	NA	100	5800	NA NA	NA	100 100	5800
Manganese MCPA_(4-chloro-2-methylphenoxy	NA ND	NA ND	100	770	ND	NA ND	0	770
MCPP_2-(4-chloro-2-methylpheno	ND	HO	ŏ		ND	ND	ŏ	
Mercury	1.17	1.83	100	0.047	1.47	2.21	100	0.047
Methoxychlor	ND	ND NA	0		ND NA	ND NA	0	
Methylene chloride (Dichlorometh) Molybdenum	NA NA	NA.	100	0.53	NA.	NA NA	100	0.53
Monochlorobiphenyl	ND	NO	0		ND	ND	0	
Naphthalene	ND	ND	0	24	ND	ND	0 100	24
Nickel Nitrobenzene	ND ND	ND ND	100 0	20	ND ON	ND ND	100	20
n-Nitrosodi-n-propylamine	NO	ND	ŏ		ND	ND	ŏ	
N-Nitrosodiphenylamine/Diphenyla	ND	ND	•		ND	ND	0	
Nonachlorobiphenyl	ND	ND	0		ND NO	ND ND	0	
Octachiorobiphenyl Pentechiorobiphenyl	NO NO	ND ND	ŏ		NO NO	ND	ŏ	
Pentachlorophenol	NO	ND	ě		0.00327	0.0049	ŏ	
pH	NA	NA	100	7. 2 4	NA	NA	100	7.24
Phenanthrene	NO	ND NO	0		ND ND	NO NO	0	
Phenol Poteselum	NO NA	NO NA	100	2000	ND NA	NO NA	100	2000
Pyrene	ND	ND	,		ND	ND	0	
Selenium	0.574	0.948	o		0.667	1	0	
Silver	ND	ND	•		ND NA	NO	0	
Sodium Styrene	NA NA	NA NA	0		NA NA	NA NA	0	
Tetrachlorobiphenyl	ND	NO.	ŏ		ND	ND	ŏ	
Tetrachioroethene	NA.	NA	0		NA.	NA	0	
Thellium	NA	NA	•		NA.	NA	0	
Toluene Tomphene	NA ND	NA ND			NA ND	NA ND	0	
trans-1,3-Dichloropropens	NA NA	NA NA	ŏ		NA NA	NA NA	ŏ	
Trichlorobiphenyl	ND	ND	ŏ		ND	ND	ő	
I i soumoi occipi mentji	NA	NA	0		NA	NA	0	
Trichloroethene			7.					
Trichloroethene Vanadium	HA	NA	100	44	NA NA	NA NA	100	44
Trichloroethene			100 0 0	44	NA NA NA	NA NA NA	100 0 0	44

		F.	F. REF 2 COMP 1			FJ	. REF 2 COMP 2	
,			Detection	Maximum			Detection	Maximum
!			Frequency in	Sediment			Frequency in	Sediment
Compounds	BAF	B\$AFn	Sediment	Concentration	BAF	BBAFn	Sediment	Concentration

		F.	F. NEF 2 COUP 8			AF	81	WFn .
			Detection Frequency in	Maximum Sediment				
Compounds	6AF	BRAFA	Sediment	Concentration	Average	Meximum	Average	Maximum
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	NA NA	NA NA	0		NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethene	NA.	NA	š		NA.	NA	NA.	NA.
1,1-Dichloroethane	NA.	NA	0		NA	NA	NA	NA
1,1-Dichloroethene 1,2,3,4,6,7,8,8-OCDD	NA O O O O O	NA 0.01 0 8			NA	NA O O O O O	NA	NA 0.0138
1,2,3,4,8,7,8,8-OCDF	0.0106 ND	ND	100 100	8,57 0.107	0.00 0.05	0.0108 0.297	0.01 0.08	0.0138
1,2,3,4,6,7,8-HpCDD	0.0313	0.0304	100	0.14	0.01	0.0351	0.02	0.0579
1,2,3,4,6,7,8-HpCDF	MO	ND	100	0.0283	0.03	0.0836	0.05	0.154
1,2,3,4,7,8,9-NpCDF 1,2,3,4,7,8-HsCDD	ND ND	ND ND	*	0.0021	0.02 0.01	0.0824 0.012	0.07 0.04	0,201 0,0545
1,2,3,4,7,8-H±CDF	0.133	0.129	80	0.0021	0.12	0.329	0.20	0.0544
1,2,3,6,7,8-HiiCDD	0.121	0.117	100	0.004	0.10	0.184	0.15	0.298
1,2,3,6,7,8-HxCDF	ND	NO	80	0.0013	0.00	0.0066	0.02	0.0300
1,2,3,7,8,9-HxCOD 1,2,3,7,8,9-HxCDF	ND ND	ND ND	100 0	0.00505	0.00 ND	0.00529 ND	0.02 ND	0.024 NO
1.2.3.7.8-PeCDD	NO.	NO	100	0.00145	0.25	0.686	0.48	1.14
1,2,3,7,8-PeCDF	ND	ND	80	0.0011	0.01	0.00022	0.07	0.0676
1,2,4-Trichlorobenzene	ND	NO	0		ND	NO	ND	ND
1,2-Dichlorobenzene 1,2-Dichloroethane	ND NA	ND NA	•		ND NA	ND NA	ND NA	ND NA
1,2-Dichloropropene	NA.	NA NA	ŏ		NA.	NA NA	NA NA	NA NA
1,3-Dichlorobenzene	NO	ND	ŏ		ND	ND	ND	NO
1,4-Dichlorobenzene	NO	ND	0		ND	ND	ND	ND
2,2'-Oxybis(1-chloropropene)_bis(2	ND ND	ND ND	<u>.</u>	0.004.0	NO 000	ND 0.00688	ND 0.02	ND 0.0312
2,3,4,6,7,8-HbCDF 2,3,4,7,8-PeCDF	אם מא	ND ND	#D	0.0016 <i>0.0013</i>	0.00 0.06	0.00888	0.02	0.0312
2,3,7,8-TCDD	2.13	2.07	~	0.0013	1.10	3.82	1.77	6.31
2,3,7,8-TCDF	0.88	0.854	100	0.0014	0.86	2.22	1.69	2.93
2,4,5-T	MD	ND	•		ND	ND	NO	ND
2,4,5-TP (Silver) 2,4,5-Trichlorophenol	ND ND	ND NO	0		ND ND	ND ND	ND ND	ND ND
2,4,6-Trichlorophenol	ND	HD	i		ND	ND	ND	ND
2,4-D	ND	HD	0		ND	ND	ND	ND
2,4-08	ND	ND ND	•		0.83	1.08	1.86	2.75
2,4-Dichlorophenol 2,4-Dimethylphenol	ND ND	ND	•		ND ND	ND ND	ND ND	ND ND
2,4-Dintrophenol	NO	ND	ĭ		ND	ND	ND	ND
2,4-Dinitrotoluene	NO	ND	•		NO	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	100	14	ND	NO	ND	ND
2-Chloronaphthalene 2-Chlorophenol	ND ND	ND ND	•		ND ND	ND ND	ND ND	ND ND
2-Hexanone	NA.	NA	ě		NA.	NA.	NA	NA
2-Metrylnaphthalene	ND	ND	•		ND	ND	ND	ND
2-Methylphenol (o-cresol)	ND	ND	0		ND	ND	ND	ND
2-Nitroendine 2-Nitrophenol	ND ND	ND ND	0		ND ND	ND NO	ND ND	ND ND
3.3'-Dichlorobenzidine	ND	NO	ĕ		ND	ND	ND	ND
3&4-Methylphenol (m&p-cresol)	ND	ND	0		ND	ND	ND	ND
3-Nitrosniine	NO	ND NA	0		ND	ND	NO NA	ND
4,4'-DOD 4,4'-DOE	NA NA	NA NA	0		NA 2.62	NA 5.08	7.12	NA 15.3
4,4'-DOT	NA.	NA	ŏ		ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	HD	0		NO	ND	ND	MD
4-Bromophenylphenyl ether	ND	MD	0		ND	ND	ND	ND
4-Chloro-3-methylphenol 4-Chloroeniline	ND ND	ND ND	0		ND ND	ND ND	ND ND	ND ND
4-Chlorophenylphenyl ether	ND	ND	ě		ND	ND	ND	ND
4-Methyl-2-pentanone (MIBIC)	NA.	NA	Ö		NA	NA	NA	NA
4-Nitoeniline	ND	MD	•		ND	ND	ND	ND
4-Nitrophenol Acenaphthene	ND ND	MD MD	0		ND ND	ND ND	ND ND	MD MD
Acenaphthylene	ND	MO	ĭ		ND	ND	ND	ND
Acetone	NA	NA	100	52	ND	ND	ND	ND
Aldrin Alpha Chlordane	NA NA	NA	•		NO NO	ND ND	NO	ND
Alphe Chlordane sions-BHC	NA NA	NA NA	0		ND ND	ND ND	ND ND	ND ND
Aluminum	0.000535	0.00082	100	19000	0 003	0.00845	0.01	0.0102
Anthracene	ND	ND	•		ND	ND	ND	ND
Antimony	ND ND	ND ND	100	4	NO	ND	NO	MD
Arsenic Berlum	ND NA	NO NA	100 100	7 220	ND ND	ND ND	ND ND	ND ND
Benzene	NA.	NA.	,00	440	NA.	NA	NA	NA.
Benzo(a)anthracene	ND	ND	0		ND	ND	ND	ND
Benzo(s)pyrene	ND	NO	•		ND	ND	ND	ND
Benzo(b)fluoranthene	ND	ND ND	0		ND	ND ND	ND ND	ND
Benzo(g,h,liperylana Benzo(k)fluoranthena	ND ND	NO.	Š		ND ND	ND ND	ND	ND ND
Beryttum	ND	ND	100	1	ND	ND	ND	ND
betn-BHC	NA	NA	0		ND	ND	ND	ND
bis(2-Chloroethoxy)methane	ND	ND	•		ND	ND	ND	ND
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthsiste	ND 0.778	ND 0.786	0		ND 0.78	ND 1.56	ND 1,38	ND 2.57
om(2-Enymeny)primisese Bromodichioromethène	0.778 NA	NA	ě		NA	NA	NA NA	2.57 NA
Bromolom	NA.	NA	ĕ		NA.	NA	NA	NA.

		F.	F. REF 2 COMP 3 Detection	Maximum		AF	B1	LAF _R
			Frequency in	Sediment	i			
Compounds	BAF	BSAFn	Sediment	Concentration	Average	Meximum	Average	Maximum
Bromomethane (Methyl bromide) Butytbenzytphthalate	NA ND	NA ND	0		NA ND	NA ND	NA ND	NA ND
Cadmium	ND	ND	100	0.85	ND	ND	ND	ND
Celcium	NA	NA	100	12000	ND	NO	ND	ND
Carbazole	NA	NA	0		ND	ND	ND	ND
Carbon disulfide	NA NA	NA NA	0		NA NA	NA NA	NA NA	NA NA
Chlorobenzene	NA.	NA.	ŏ		NA NA	NA.	NA.	NA.
Chloroethane	NA	NA	ŏ		NA	NA	NA	NA
Chloroform	NA	MA	0		NA.	NA	NA	NA
Chloromethane	NA	NA	0		NA .	NA	NA	NA.
Chromium (Chrysene	0.081 ND	0.0786 ND	100 0	25	0.0211 ND	0.061 ND	0.04 ND	0.0786 ND
Cie/Trans-1.2-Dichloroethene	NA.	NA.	ŏ		NA.	NA.	NA.	NA.
cis-1,3-Dichioropropene	NA	NA	ò		NA	NA	NA	NA
Cobelt	NA	NA	100	10	ND	NO	ND	ND
Copper	0.0277	0.0266	100	23	0.02	0.0386	0.04	0.106
Cyanide, Total Delapon	NO ND	ND ND	0		ND ND	ND ND	ND NO	ND ND
Decachloroblphenyl	ND	ND	ŏ		ND	NO.	NO	NO.
delta-8HC	NA	NA	ŏ		ND	NO	ND	ND
Dibenzo(s,h)enthracene	ND	ND	0		0.20	0.378	0.552	1.01
Dibenzoluran	ND	ND	0		NO	ND	ND	ND
Dibromochloromethane Dicembe	NA ND	NA ND	0		NA 0.00	NA 0.0822	NA 0.30	NA 0.287
Dichlorobiphenyl	NO NO	ND ND	ŏ		ND ND	ND	ND.30	ND ND
Dichloroprop	NO	NO	ŏ		0.0405	0.0479	0.00	0.154
Diekkrin	NA	NA	0		0.87	1.29	0.777	0.867
Distrytphthalate	0.208	0.2	0		0.11	0.206	0.27	0.505
Dimethylphthalate Di-n-butylphthalate	NO NO	NO NO	0		ND ND	ND ND	ND ND	ND ND
U-n-outytonmente Di-n-octytohthelete	ND ND	ND ND	0		ND ND	NO NO	ND ND	NO ND
Dinoseb	NO.	ND	ŏ		ND	NO	NO	NO
Endoeullan I	NA	NA	0		ND	MD	ND	ND
Endocullan II	NA	NA	o .		NO	HO	NO	HO
Endoeullan eullate Endrin	NA NA	NA NA	0		ND ND	ND ND	ND ND	NO NO
Endrin aldehvde	NA.	NA	ŏ		ND	ND	ND	NO
Endrin ketone	NA	NA	ō		ND	ND	ND	ND
Ethylbenzene	NA	NA	0		NA	NA	NA	NA
Fluoranthene	NO	ND	0		ND ND	ND NO	ND ND	ND
Fluorene Gemme Chiordene	ND NA	ND NA	8 0		0.67	0.867	1.00	NO 1
gemme-BHC (Lindane)	NA.	NA.	ŏ		ND	ND	NO	ND
Heptechlor	NA	NA	0		ND	ND	ND	ND
Heptschlor epoidde	NA	NA	0		ND	ND	ND	ND
Heptschlorobiphenyl Hexachlorobenzene	ND ND	ND ND	0		0.27 ND	0.361 ND	1.49 ND	1.64 ND
Hexachlorobiphenyl	ND	NO.	ŏ		1.47	2.28	5.05	7.33
Hexachlorobutediene	ND	ND	o o		ND	ND	ND	ND
Hexachlorocyclopentediene	ND	ND	0		ND	ND	ND	ND
Hemchloroethane	ND ND	ND ND	0		0.23	ND 0.225	ND 0.004	ND 0.604
Indeno(1,2,3-od)pyrene Iron	NA NA	NO NA	100	24000	NA NA	0.225 NA	NA NA	0.604 NA
Isophorone	NO	ND	0	24000	ND	ND	NO	ND
Leed	ND	ND	100	26	0.008	0.0174	0.02	0.0373
Magnesium	NA	NA	100	5800	NA	NA	NA	NA
Manganese MCPA_(4-chloro-2-methylphenon	NA ND	NA ND	100 0	770	NA 1.12	NA 1.17	NA 2.47	NA 3.54
MCPP_2-(4-chloro-2-methylpheno	ND ND	ND	ŏ		ND	ND	ND	NO
Mercury	1.06	1.03	100	0.047	1.42	4.84	2.01	13
Methosychior	NA	NA	0		NA	NA	NA	NA
Methylene chloride (Dichlorometh	NA	NA	0		NA	NA	NA	NA
Molybdenum Manachlaubhand	NA ND	NA ND	100 0	0.53	NA ND	NA ND	NA ND	NA NO
Monochlorobiphenyl Naphthelene	ND ND	NO NO	0		ND ND	ND	NO.	NO.
Nickel	ND	ND	100	26	ND	ND	NO	NO
Nitrobenzene	ND	NO	0	-	ND	ND	ND	ND
n-Nitroeodi-n-propylamine	ND	ND	0		ND	NO	ND	ND
N-Nitrosodiphenylamine/Diphenyla	ND ND	ND	0		ND ND	ND ND	ND ND	ND
Nonechlorobiphenyl Octachlorobiphenyl	NO NO	ND ND	0		0.11	ND 0.111	0.82	ND 0,615
Pentachloroblphenyl	NO NO	ND	ŏ		0.88	1.07	2.73	4.86
Pentachiorophenol	ND	ND	ŏ		0.00236	0.00382	0.00461	0.00677
ρΗ	MA	NA	100	7.24	NA.	NA	MA	NA
Phononthrone Dhonol	ND	ND ND	0		ND ND	ND ND	ND ND	ND ND
Phenol Poteseium	ND NA	ND NA	100	2600	ND NA	NA NA	NA NA	NA NA
Pyrene	ND	ND			ND	ND	ND	ND
Selenium	ND	ND	ŏ		0.479	0.667	1.22	1.7
Silver	ND	ND	٥		DN	ND	ND	ND
Sodium	NA	NA	0		NA .	NA	NA	NA
Styrene Tetraphicable band	NA NA	NA ND	0		NA 150	NA 204	NA	NA
Tetrachiorobiphenyl Tetrachioroethene	ND NA	ND NA	0		1.50 NA	2.94 NA	6,85 NA	13.3 NA
Theillum	NA NA	NA NA	ŏ		NA NA	NA NA	NA NA	NA NA
Toluene	NA	NA	ŏ		NA.	NA.	NA	NA
Tomphene	NA	NA	0		NA	NA	NA	NA
trans-1,3-Dichloropropens	NA	NA	0		NA.	NA	NA	NA
Trichlorobiphenyl	ND	NO	0		0.18	0.323	0.84	1.48
Trichloroethene Vanedium	NA NA	NA NA	0 100	44	NA NA	NA NA	NA NA	NA NA
Vinyl chloride	NA NA	NA NA	0	**	NA NA	NA NA	NA NA	NA NA
Xylenes, Total	NA.	NA.	ŏ		NA.	NA	NA	NA
Zinc	0.323	0.313	100	96	0.18	0.426	0.30	0.703

BAF a Bloscomunitation Factor
BSAFn a Biote-Sedement Accumulation Factor (lipid and organic carbon normalized)
BAF and BSAFn are not calcutated it compound was not detacted or analyzed in forage fish
BAF and BSAFn calcutated securing 1/2 detection limit for nondetects in aediment. If all samples

[FJ	. REF 1 COMP 5			BAF	84	AFn]
1			Detection	Maximum				í
1			Proquenty in	Sediment				
Compounds	BAF	BSAFn	- Bodimout	Concentration	Average	Maximum	Average	Maximum

BAP BEAPN SESSION CONCENTRATION Average No.

Non-detect in sediment, BAF and BBAF solely based on detection irrite.

Units: organics—up/ng, inorganiss—mp/ng

Originally presented in Appendix D el June 2002 Ecological Risk Assessment.

Compound	Whole Body Toxicity Values for Fish (mg/kg)	Endpoint	Calculated Average BAF, BSAFs or sediment-flah relationship ²	Predicted Risk Based Sediment Concentration (mg/kg) ³
Cyanide	NA NA			
Pesticides/Herbicides				
2,4,5-T	3.7	NOED		
2,4,5-TP (Silvex)	NA NA			
2,4-D	1 1	NOED		
2,4-DB	NA NA	14020	0.83	
4.4'-DDD	0.6	LOED	0.00	
4,4'-DDE	29.2	NOED	7.12	4.1
			7.12	
4,4'-DDT	3.8	LOED		<u> </u>
Total DD1				4.1
Aldrin	0.157	NOED		
alpha-BHC	NA NA			
alpha-Chlordane	16.6	LOED		
beta-BHC	NA NA			
Dalapon	NA NA			
delta-BHC	NA NA			
Dicamba	NA NA		0.0922	
Dichlorprop	NA NA		0.0465	
Dieldrin	3.7	LOED	0.777	4.76
Endosulian I	0.195	NOED		
Endosulfan II	0.195	NOED		
Endosulfan sulfate		TOEU		
	NA NA			
Endrin letone	NA NA			<u> </u>
genvne-BHC (Lindene)	2.3	NOED		
gerryne-Chlordene	16.6	LOED	1	16.6
Heptechlor	5.7	NOED		
Heptechlor eposide	3.2			
MCPP	NA			
Methoxychior	0,128	NOED		
Semivolatile Organic Compounds	T			
1,2,4-Trichlorobenzene	NA NA			
1,2-Dichlorobenzene	0.7	NOED		
1,3-Dichlorobenzene	170	NOED/LOED		
1,4-Dichlorobenzene	69.5	NOED		
	09.0	14050		
	214			
2,4,5-Trichlorophenol	NA NA			
2,4,6-Trichlorophenol	9.9			
2,4,6-Trichlorophenol 2,4-Dichlorophenol	9.9 NA			
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol	9.9 NA 1.96			
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene	9.9 NA 1.96 NA			
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 3&4Methylphenol	9.9 NA 1.96 NA			
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methy/naphthalene 3&4Methy/phenol 4-Chloroenilline	9.9 NA 1.96 NA	LOED		
2,4.6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Chlorophenol 3-Methylnaphthalene 3&4Methylphenol	9.9 NA 1.96 NA	LOED		
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methy/naphthalene 3&4Methy/phenol 4-Chloroaniline 4-Nitroaniline	9.9 NA 1.96 NA NA 119	LOED		
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 38.4Methylphenol 4-Chloroenilline 4-Nitroenilline 4-Nitroehenol	9.9 NA 1.96 NA NA 119 NA	LOED		PAHs are metabolized in fish.
2,4.6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Chlorophenol 3-Methylnaphthalene 3-Methylphenol 4-Chloroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene	9.9 NA 1.96 NA NA 119 NA NA 3.5	LOED		PAHs are metabolized in fish.
2,4.6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Chlorophenol 3-Methylophthalene 3-Methylophenol 4-Chloroenilline 4-Nitroenilline 4-Nitrophenol Acenaphthene Acenaphthylene	9.9 NA 1.96 NA NA 119 NA NA NA	LOED		PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 3&4Methylphenol 4-Chloroenilline 4-Nitroenilline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene	9.9 NA 1.96 NA NA 1.19 NA 1.19 NA 1.19 NA NA NA NA NA NA	LOED		PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 38.4Methylphenol 4-Chloroeniline 4-Nitroeniline 4-Nitroeniline 4-Nitroeniline 4-Nitroeniline 4-Roenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	9.9 NA 1.96 NA NA 119 NA NA NA NA NA			PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Methyinaphthalene 3&4Methyiphenol 4-Chloroeniline 4-Nitroeniline 4-Nitroeniline 4-Nitroeniline Acenaphthene Acenaphthylene Arthracene Benzo(a)pyrene	9.9 NA 1.96 NA NA 119 NA NA NA 3.5 NA NA NA	LOED		PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Methyinaphthalene 38,4-Methyiphenol 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)byrene	9.9 NA 1.96 NA NA 119 NA NA 3.5 NA NA NA NA			PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Methylnaphthalene 38.4Methylphenol 4-Chloroeniline 4-Nitroeniline 4-Nitrophenol Acenaphthene Acenaphthylene Arthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)hluoranthene	9.9 NA 1.96 NA NA 1.19 NA 1.19 NA NA NA NA 0.0239 NA NA			PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 38.4Methylphenol 4-Chloroeniline 4-Nitroeniline 4-Nitroeniline 4-Nitroeniline 4-Nitroeniline 6-Nitroeniline 8-Nitroeniline 8-Comphithene 8-Comphithene 8-Comphithene 8-Rozo(a)anthracene 8-Rozo(a)anthracene 8-Rozo(a)pyrene 8-Rozo(b)fluoranthene 8-Rozo(b)fluoranthene 8-Rozo(b)fluoranthene	9.9 NA 1.96 NA NA 1.19 NA NA 3.5 NA	NOED		
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Methylnaphthalene 38.4Methylphenol 4-Chloroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fisoranthene Benzo(g,f,f)perylene Benzo(g,f,f)perylene	9.9 NA 1.96 NA NA 1.19 NA 1.19 NA NA NA NA 0.0239 NA NA		1.38	PAHs are metabolized in fish.
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methyingprithalene 3&4Methyiphenol 4-Chloroenilline 4-Nitroenilline 4-Nitroenilline 4-Nitroenilline 4-Nitroenilline 4-Nitroenilline 6-Nitroenilline 6-Nitroenilli	9.9 NA 1.96 NA NA 1.19 NA NA 3.5 NA	NOED NOED	1.38	
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Methylnaphthalene 38.4 Methylphenol 4-Chloroeniline 4-Nitroeniline 4-Nitroeniline 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthylene Arthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)hylperylene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(b)thoranthene Benzo(b)thoranthene Benzo(b)thoranthene Benzo(b)thoranthene Benzo(b)thoranthene	9.9 NA 1.96 NA NA 1.19 NA NA 3.5 NA NA NA NA NA NA NA 0.0239 NA NA NA 0.066 8.45	NOED	1.38	
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 36.4Methylphenol 4-Chloroeniline 4-Nitroeniline 4-Nitrophenol 4-Chloroeniline 4-Nitrophenol Acenaphthylene Arcenaphthylene Arthracene Benzo(a)anthracene Benzo(a)aphrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene	9.9 NA 1.96 NA NA 1.19 NA NA 3.5 NA NA NA 0.0239 NA NA NA 0.066 8.45 NA	NOED NOED	1.38	
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylophthalene 38.4Methylphenol 4-Chloroeniline 4-Nitrophenol 4-Chloroeniline 4-Nitrophenol Acenaphthene Acenaphthylene Acenaphthylene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)ah,j)perylene Benzo(c)ah,jperylene Benzo(c)ah,jperylene Benzo(c)ah,jperylene Benzo(c)ah,jperylene Benzo(c)ah,jperylene	9.9 NA 1.96 NA NA 1.19 NA NA 3.5 NA NA NA NA 0.0239 NA	NOED NOED		
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 36.4Methylphenol 4-Chloroeniline 4-Nitroeniline 4-Nitrophenol 4-Chloroeniline 4-Nitrophenol Acenaphthylene Arcenaphthylene Arthracene Benzo(a)anthracene Benzo(a)aphrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene Belzo(c)thiopanthene	9.9 NA 1.96 NA NA 1.19 NA NA 3.5 NA NA NA 0.0239 NA NA NA 0.066 8.45 NA	NOED NOED	1.38	

Compound	Whole Body Toxicity Values for Fish	Endpoint	Calculated Average BAF, BSAFs or sediment-fish relationship ²	Predicted Risk Based Sediment Concentration (mg/kg) ³
	(mg/kg)	Enapoint	Calculated Average BAP, BSAPs or sediment-fish relationship	(mg/kg)
Fluoranthene Fluorene	NA NA	ļi		
		1050		
Hexachlorobutadiene	34.8 NA	LOED	0.604	
Indeno(1,2,3-cd)pyrene		LOED	U.8U#	
Naphthalene	17			
Nitrobenzene	29	LOED		-
N-nitrosodiphenylamine	2	NOED	0.00236	
Pentachiorophenol	NA .		0.00236	
Phenanthrene	NA .			
Phenol	73.4	 		
Pyrene	NA NA			
Total PAHs Volatile Organic Compounds				VOCs are not expected to biosccumulate in fish.
1,1,1-Trichloroethane	0.66	NOED		
1,1,2,2-Tetrachloroethane	0.077	NOED		
1,1,2-Trichloroethane	NA NA	1		
1,2-Dichloroethane	1	†		
1,2-Dichloroethene (total) 2-Butanone (MEK)				
2-Hexanone		i —		
4-Methyl-2-pentanone (MIBK)	· · · · · · ·	1		
Acetone	NA NA			-
Benzene	NA NA	<u> </u>		
Bromodichioromethene	12.			
Bromoform		 		
Carbon disulfide		 		·-
Chlorobenzene	1.4	NOED		•
Chloroform	0.66	NOED	· · · · · · · · · · · · · · ·	
Dibromochioromethane	0.00	11000		
Ethylbenzene		<u> </u>		
Methylene chloride		 	·	
Styrene		 		
Tetrachloroethene	0.17	NOED		
Toluene		INOLU		
Trichloroethene				
Vinyl chloride		 	··	
Xylenes (total)				
Inorganics		 		
Aluminum	12.5	NOED	in(Ai _{bah}) = -21.2593 + 2.583 in(Ai _{bad})	9980
Antimony	1 .2.0	1.000	#TOOO T LOOD #TOOO	3300
Arsenic	0.52	LOED		<u> </u>
Barium	0.52 NA	WED		
Beryflum	5.3	NOED	ļ	
Cadmium				
	0.5	LOED	00011	
Chromium	5.5	NOED	0.0211	261
Cobalt	NA NA			
Copper	12.1	NOED/LOED	in(Cu) _{lish} = -1.9295+0.4371 in(Cu) _{list}	24792
Iron	ļ <u></u>			
Lead	26.2	NOED/LOED	0.00833	3150
Manganese	L			
Mercury	0.25	NOED/LOED	1.42	0.18
Molybdenum				
Nickel	NA .	L		
Selenium	l		0.479	
Silver		1		
Thallium	2.72	NOED		
Tin				

Compound		Whole Body Toxicity Values for Fish (mg/kg)	Endpoint	Calculated Average BAF, BSAFs or sediment-fish relationship ²	Predicted Risk Based Sediment Concentration (mg/kg) ³
Vanadium	-	0.68	NOED		
Zinc		50	NOED/LOED	in(Zn) _{sep} = 2.4275 + 0.1754 in(Zn) _{sep}	4739
PCBs		-			
Monochiorobiohenvi					
Dichlorobiphenyl					
Trichlorobiphenyl	_			0.84	
Tetrachlorobiohenyl				6.85	
Pentachlorobiphenyl				2.73	
Hexachlorobiphenyl				5.05	
Heptachlorobiphenyl				1,49	
Octachlorobiphenyl				0.815	
Nonachlorobiphenyl					
Decachlorobiphenyl					
	Total PCBs	0.95	NOED	In(PCBI _{ss} /%lipide) = 1.6666 +0.6806 In(PCB _{sss} /%OC)	0.58
Dioxins					
1,2,3,4,6,7,8,9-OCDD				0.00636	
1,2,3,4,6,7,8-HpCDD				0.019	
1,2,3,4,7,8-HxGDD				0.0391	
1,2,3,6,7,8-HxCDD				0.147	
1,2,3,7,8,9-HxCDD	_			0.019	
1,2,3,7,8-PeCDD				0.484	
Furans					
1,2,3,4,6,7,8,9-OCDF				0.0822	
1,2,3,4,6,7,8-HpCOF				0.049	
1,2,3,4,7,8,9 HbCDF				0.0731	
1,2,3,4,7,8+hCDF				0.2	
1,2,3,6,7,8+6CDF				0.0841	
1,2,3,7,8,9+bCDF					
1,2,3,7,8-PeCDF			_	0.0876	
2,3,4,6,7,8-HbCDF				0.0242	
2,3,4,7,8-PeCDF				0.231	
2,3,7,8-TCDF				1.69	
	Total TEQ	0.00005	NOED	In[Total TEQ/%lipids] = -1.748 + 0.7556 In[Total TEQ/%OC]*	0.00061

ND = not detected

¹Originally presented as Table 4-2 of June 2002 Ecological Risk Assessment

²The average Biota-Sediment Accumulation Factors calculated from forage fish and sediment collected in 1999 and 2000 or the linear regression equation derived from those data where the results are linear.

Hierarchy of use: linear regresion if statistically significant; then average BAF for non-polar compounds and inorganics; average BSAFs for polar organic compounds. BAF (inorganics and polar organics) = [forage fish] / [sediment]

BSAF (nonpolar organics) = ([forage fish)/fraction lipid) / ([sediment)/fraction organic carbon)

^{*}equation for dioxin TEQs is for concentration in ug/kg in both sediment and fish.

If toxicity information and BSAF are available, the predicted sediment concentration is the toxicity information divided by the BAF or by the BSAF and unnormalized or predicted by the linear regression

⁽average fraction lipid = 0.015 and average fraction organic carbon = 0.018).

Compound	Site-Specific Risk-Based Concentration ¹ For the Protection of Fish, mg/kg	Illinois Soil B	ackground, mg/kg² Mean	Upper 95% UCL Creek Section B, mg/kg	Maximum Concentration Creek Section C, mg/kg	Maximum Concentration Creek Section D, mg/kg ³	Upper 95% UCL Creek Section E, mg/kg	Upper 95% UCL Creek Section F, mg/kg
DOT	4.1	NA NA	NA NA	0.043	ND	0.24	0.0193	0.00695
Dieldrin	4.8	NA	NA .	0.00755	0.011	0.69	0.0226	0.00379
Gamma-chlordane	17	NA	NA	0.00044	0.0011	0.067	0.00245	0.00199
Bis(2-ethylhexyl)phthalate	0.48	NA.	NA	0.279	ND	ND	0.077	0.11
Chromium	261	151	21.2	71	110	57	74.2	16.9
Copper	24792	156	28.9	898	250	1600	1080	230
Lead	3150	647	71.1	99.5	140	280	126	88.1
Mercury	0.18	0.99	0.12	0.19	0.31	0.238	0.71	0.419
Zinc	4739	798	137.9	5340	3400	8200	3150	5650
Total PCBs	0.58	NA NA	NA NA	1.48	0.178	2.437	0.274	0.0838
Dioxin TEQs	0,0005	NA.	NA NA	0.000279	0.0000431	0.000866	0.0000728	0.000156

Bold value exceeds cleanup goal NA = not available/applicable

¹Based on Average BAF, BSAF, or linear regression from Table 2.

^{*}Illinois Environmental Protection Agency. 1994. A Summary of Selected Background Conditions for Inorganics in Soil, IEPA/ENV/94-181

Table A4 Creek Segment Sampling Transects with Concentrations Greater Than Risk-Based Concentrations for Protection of Fish

	Site-Specific Risk-Based			Transects that Exceed R	BCs	
Compound	For the Protection of Fish, mg/kg	Creek Section B	Creek Section C	Creek Section D	Creek Section E	Creek Section F
Mercury	0.18	CBS-CSB-T0-C1, CBS- CSB-T1-W1, CBS- CSB-T2-E1, CBS-CSB- T2-C1, CBS-CSB-T3- E1, CBS-CSB-T6-C1, CBS-CSB-T9-W1, CBS-T11-C1, CBS- CSB-T12-C1, CBS- CSB-T12-C1, CBS-		CBS-CSD-T4-1, CBS-CSD-T6-1	CBS-CSE-T1-1, CBS- CSE-T2-1, CBS-CSE-T6-1, CBS-CSE-T8-1, CBS-CSE-T10-1, CBS-CSE-T11-1, CBS-CSE-T12-1, CBS-CSE-T13-2, CBS-CSE-T14-1, CBS-CSE-T15-1, CBS-CSE-T16-1, CBS-CSE-T17-1	CBS-CSF-T3-1, CBS-CSF-T5-1, CBS-CSF-T9-1, CBS-CSF-T14-1
Zinc	4739	CBS-CSB-T0-C1, CBS CSB-T4-C1, CBS-CSB T8-C1, CBS-CSB-T11-		CSD-T1-1 and CSD-T2-1	Does not present a risk	C88-CSF-T-5
Total PCBs	0.58	C88-C88-T0-C1, C88- CS8-T1-E1, C8S-CS8- T1-W1, C8S-CS8-T3-E1, C8S-CS8-T3-C1, C8S-CS8-T5-E1, C8S-CS8- CS8-T6-E1, C8S-CS8- T11-C1, C8S-CS8- T17-E1		CSD-T6-1	Does not present a risk	Does not present a risk
Dioxin TEQs	0.0005	Does not present a risk	Does not present a risk	CSD-T6-1	Does not present a risk	Does not present a risk

¹Based on Average BAF, BSAF or linear regression from Table 2.

Note that risk is identified when UCL (or maximum for CS-C and CS-D) exceed RBC. This table identifies all transects over the RBC, for creek segments identified with risk.

²RBC = Risk Based Concentration

Table A5 Creek Segment Sampling Transacts with Potential Toxicity to Benthic Organisms due to PAHs

	Transects with Sum of Toxic Units Greater Than 1.0									
Creek Segment B	Sum of Toxic Units	Creek Segment C	Sum of Toxic Units	Creek Segment D	Sum of Toxic Units		Sum of Toxic Units	Creek Segment F	Sum of Toxic Units	
CSB-T0-C1	11							CSF-T15-1 ²	1.3	
CSB-T3-E1	5.4	None		None	}	None		ł	}	
CSB-T12-C1	6.3	140118		MOHE		INOTIO]	
CSB-T16-1	2.7									

¹USEPA Draft Equilibrium-Partitioning Sediment Guidelines for PAH Mixtures (USEPA,2000) identifies sediment concentrations as potentially toxic to benthic invertebrates when the Sum of Toxic Units is greater than 1.0.

Method was presented in November 2002 Response to Comments document; results were presented as Tables 4-1 through 4-5.

²This transect is unlikely to be toxic since the Sum of Toxic Units is barely over 1 and multiple conservative assumptions are built into the assessment.

CREEK BOTTOM SOIL LEAC

ROUNDWATER SUMMARY

Table B1 Summary of Potential TACO Tier 2 Creek Bottom Soil Leaching to Groundwater Exceedances

Creek Segment	Transect	Constituent
CS-B	T0	Cadmium, Chlorobenzene
	T1	Cadmium, Dieldrin, Pentachlorophenol
	T2	Cadmium
	T3	Cadmium, Dieldrin, Pentachlorophenol, Nitrobenzene
	T4	Pentachiorophenol
	T5	Chlorobenzene, Pentachlorophenol
	T6	Cadmium, Pentachlorophenol
	T7	beta-BHC, Cadmium
	T8	beta-BHC, Cadmium, Pentachlorophenol,
	Т9	beta-BHC, Cadmium, delta-BHC
	T10	Cadmium
	T11	Cadmium
	T12	Cadmium
	T16	Dieldrin
	T1 7	Cadmium, Dieldrin, Pentachlorophenol
	T18	Cadmium, Chlorobenzene
cs-c	T1	Cadmium
	T2	Cadmium
	T3 T4	Cadmium
	T6	Cadmium
	16 T7	Cadmium
	T8	Cadmium Cadmium
	T9	Cadmium
CS-D	T1	Cadmium
	T2	Cadmium
	T3	Cadmium
	T4	Cadmium
	T5	Cadmium
	Т6	Cadmium, Dieldrin
CS-E	T1	Cadmium
	T 2	Cadmium
	Т3	Cadmium
	<u>T</u> 4	Cadmium
	<u>T5</u>	Cadmium
	<u>T6</u>	Cadmium
	<u> 17</u>	Cadmium
	_T9	Cadmium
	T12	Cadmium
	T16	Cadmium, Dieldrin
	T 17	Cadmium
CS-F	<u>T</u> 3	beta-BHC
	T5	Cadmium
	<u>T</u> 6	Cadmium
	17	Cadmium
	<u>T8</u>	Cadmium
	_T9	Cadmium
	T10	Cadmium
	T11	Cadmium
	T12	Cadmium
	T14	Cadmium
	T15	Cadmium
	T16	1,1,2,2-Tetrachloroethane
Site M		 1,4-Dichlorobenzene, Antimony, Nickel, Pentachlorophenol

APPENDIX B1

REVISED EVALUATION OF POTENTIAL LEACHING FROM CREEK BOTTOM SOILS

Memorandum

To:

Bruce Yare, Solutia

Date:

22 May 2003

From:

Elizabeth Perry, Maya Desai

File:

06105-016

RE:

Revised Evaluation of Potential Leaching

from Creek Bottom Soils, Sauget Area 1

CC:

Lisa Bradley, ENSR

The attached files provide the revised leaching calculations, based on the USEPA comments dated January 29, 2003. Based on our meeting with the agencies on April 28, we understand Solutia will be providing a workplan to the agencies, and not a comment-specific response document. The attached tables are for your use in the workplan.

The potential leaching of constituents from the creek bottom soils to groundwater was addressed in Appendix G to Solutia's submittal dated November 1, 2002. The USEPA comments concerning the calculations are numbers 18, 19, 22, 23, and 24. If we accept all the USEPA's recommendations, the revised Tier 2 remediation objectives (ROs) are presented on the attached tables. These represent changes to the original Appendix G tables as follows:

Table G-1, screening of maximum and EPC concentrations against Tier 1 ROs for the soil-to-groundwater pathyway, is unchanged.

Table G-2, a listing of COIs based on the Tier 1 screening, is unchanged.

Table G-3 has been revised, **see Table 1** attached. The revision consists of revised Tier 2 ROs, including expanding the constituent list to include all constituents whose EPC (95% UCL) exceeds the Tier 1 RO.

Table G-4, TOC and f_{oc} data, is unchanged.

Tables G-5 and G-6, related to the evaluation of groundwater data, remain unchanged.

We have also provided **Table 2**, a new table which lists the constituents that exceed the Tier 2 ROs for each creek segment.

Attachment A is the revised Attachment A from Appendix G, which provides the detailed Tier 2 calculations for each constituent in each reach. The revisions are based on the USEPA's recommendations.

.

Table 1 (Revised Table G-3)
TACO Tier 2 SGW RO Comparison
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

		Exposure Point	TACO Tier 1		TACO Tier 2 Class i Soil-to-	
le.		○ Concentration 🖔	groundwater	is EPC>Tier 1	groundwater	is EPC>Tier 2
Constituent	Units	(EPC)	(SGW) RO	? SGW?	(SGW) RO (a)	SGW?
CS-B						
1,2,4-Trichlorobenzene	mg/kg	4.90E-01	5.00E+00	No		10 10 10 10
1,2-Dichlorobenzene	mg/kg	4.80E-01	1.70E+01	No		
1,4-Dichlorobenzene	mg/kg	2.70E-01	2.00E+00	No	Faculty as a first property of the second	
2,4,6-Trichlorophenol	mg/kg	1.15E-01	1.50E-01	No		
2,4-Dichlorophenol	mg/kg	2.07E-01	1.00E+00	No		and the same of th
4-Chloroaniline	mg/kg	5.14E-01	7.00E-01	No		Les
alpha-BHC	mg/kg	7.00E-04	5.00E-04	Yes	4,23E-03	No
Arsenic	mg/kg	1.14E+01	2.90E+01	No		
Benzene	mg/kg	6.80E-03	3.00E-02	No		
beta-BHC	mg/kg	1.50E-03	5.00E-04	Yes	4.23E-03	No
Cadmium	mg/kg	2.60E+01	7.50E+00	Yes	8.22E+00	Yes
Carbazole	mg/kg	1.33E-01	6.00E-01	No		
Chlorobenzene	mg/kg	1.39E+00	1.00E+00	Yes	1.41E+00	No
Chromium	mg/kg	9.03E+01	3.80E+01	Yes	2.01E+03	No
delta-BHC	mg/kg	5.60E-04	5.00E-04	Yes	3.51E-03	No
Dieldrin	mg/kg	8.90E-03	4.00E-03	Yes	2.62E-02	No
N-Nitrosodiphenylamine	mg/kg	1.41E-01	1.00E+00	No	Lines will to a minimum and making a self-curate and	and the state of t
Nickel	mg/kg	2.28E+02	1.30E+02	Yes	9.83E+02	No
Nitrobenzene	mg/kg	1.32E-01	1.00E-01	Yes	1.00E-01	Yes
Pentachlorophenol	mg/kg	2.65E-01	3.00E-02	Yes	3.69E-02	Yes
Silver	mg/kg	8.06E-01	8.50E+00	No	707	TO THE PARTY OF TH
Tetrachloroethene	mg/kg	5.10E-03	6.00E-02	No	V	
Zinc	mg/kg	6.16E+03	6.20E+03	No		POR DELL'OR S
CS-C						
Cadmium	mg/kg	1.74E+01	7.50E+00	Yes	8.22E+00	Yes
Chromium	mg/kg	5.83E+01	3.80E+01	Yes	2.01E+03	No
delta-BHC	mg/kg	1.00E-03	5.00E-04	Yes	4.47E-03	No
Dieldrin	mg/kg	1.10E-02	4.00E-03	Yes	3.34E-02	No
Nickel	mg/kg	3.57E+02	1.30E+02	Yes	9.84E+02	No

Table 1 (Revised Table G-3)
TACO Tier 2 SGW RO Comparison
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

		Exposure Point	TACO Tier 1		TACO Tier 2 Class I	
Constituent	Units	Concentration (EPC)	groundwater (SGW) RO	is EPC>Tier 1 SGW?	groundwater (SGW) RO (a)	is EPC>Tier 2 SGW?
CS-D	1]				
Cadmium	mg/kg	4.00E+01	5.20E+00	Yes	8.22E+00	Yes
Chromium	mg/kg	5.70E+01	4.00E+01	Yes	2.01E+03	No
delta-BHC	mg/kg	1.90E-03	5.00E-04	Yes	4.35E-03	No
Dieldrin	mg/kg	6.90E-01	4.00E-03	Yes	3.25E-02	Yes
Nickel	mg/kg	5.30E+02	1.00E+02	Yes	9.83E+02	No
Zinc	mg/kg	8.20E+03	5.10E+03	Yes	3.65E+04	No
CS-E						
alpha-BHC	mg/kg	0.0005	5.00E-04	No	to a company and the second	Comment of the second
Cadmium	mg/kg	2.31E+01	7.50E+00	Yes	8.23E+00	Yes
Chromium	mg/kg	7.27E+01	3.80E+01	Yes	2.01E+03	No
Dieldrin	mg/kg	2.26E-02	4.00E-03	Yes	3.00E-02	No
Nickel	mg/kg	2.67E+02	1.30E+02	Yes	9.84E+02	No
Pentachlorophenol	mg/kg	2.07E-02	3.00E-02	No		
Silver	mg/kg	1.38E+00	8.50E+00	No	د ماه رستان مستقر و المنها و المناز	endergeliere i de grader trape en mateixa i l'après
CS-F						
1,1,2,2-Tetrachloroethane	mg/kg	4.40E-03	3.00E-03	Yes	3.00E-03	Yes
beta-BHC	mg/kg	1.10E-03	5.00E-04	Yes	2.50E-03	No
Cadmium	mg/kg	2.80E+01	1.10E+01	Yes	1.10E+01	Yes
Dieldrin	mg/kg	3.70E-03	4.00E-03	No	Control of the	and the state of the last
Nickel	mg/kg	3.29E+02	1.80E+02	Yes	9.85E+02	No
Pentachlorophenol	mg/kg	1.17E-02	2.00E-02	No	10 Aug 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. A. SOLATION
Zinc	mg/kg	5.37E+03	7.50E+03	No	THE RESERVE TO SERVE THE PERSON OF THE PERSO	

Table 1 (Revised Table G-3)
TACO Tier 2 SGW RO Comparison
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Constituent	O m	Exposure Point Concentration (EPC)	groundwater	is EPC>Tier 1 SGW?	TACO Tier 2 Class I Soil-to- groundwater (SGW) RO((a)	Is EPC>Tier 2 SGW?
Site M						
1,4-Dichlorobenzene	mg/kg	4.10E+00	2.00E+00	Yes	2.84E+00	Yes
alpha-BHC	mg/kg	2.30E-03	5.00E-04	Yes	5.57E-03	No
Antimony	mg/kg	5.27E+00	5.00E+00	Yes	6.23E+00	No
Benzene	mg/kg	1.77E-02	3.00E-02	No		المرافقة على الانتخاص المرافقة
Chlorobenzene	mg/kg	1.20E+00	1.00E+00	Yes	1.84E+00	No
Chromium	mg/kg	2.59E+01	3.20E+01	No		en .
Heptachlor epoxide	mg/kg	8.60E-01	7.00E-01	Yes	1.34E+00	No
Nickel	mg/kg	1.26E+03	7.00E+02	Yes	9.69E+02	Yes
Pentachlorophenol	mg/kg	1.90E-01	2.00E-02	Yes	4.84E-02	Yes

Notes:

FOD - Frequency of Detection.

RO - Remediation Objective.

TACO - Tiered Approach to Corrective Action Objectives.

EPC = 95% UCL

(a) In accordance with 35 III. Adm. Code 742, Section 742.600(f), if the Tier 2 RO is less than the Tier 1 RO, then the Tier 1 RO is used.

Table 2
Summary of Tier 2 Exceedances per Creek Segment
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

The second secon	Exposure Point	ACO Tier 2 Class I Soil-	
Constituent	Concentration (EPC)	RO(a)	Is EPC>Tier 2 SGW?
CS-B			
Cadmium	2.60E+01	8.22E+00	Yes
Nitrobenzene	1.32E-01	1.00E-01	Yes
Pentachiorophenol	2.65E-01	3.69E-02	Yes
CS-C			
Cadmium	1.74E+01	8.22E+00	Yes
CS-D			
Cadmium	4.00E+01	8.22E+00	Yes
Dieldrin	6.90E-01	3.25E-02	Yes
CS-E			
Cadmium	2.31E+01	8.23E+00	Yes
CS-F			
1,1,2,2-Tetrachloroethane	4.40E-03	3.00E-03	Yes
Cadmium	2.80E+01	1.10E+01	Yes
Site M			
,4-Dichlorobenzene	4.10E+00	2.84E+00	Yes
Nickel	1.26E+03	9.69E+02	Yes
Pentachlorophenol	1.90E-01	4.84E-02	Yes

Notes:

RO - Remediation Objective.

TACO - Tiered Approach to Corrective Action Objectives.

EPC = 95% UCL

(a) In accordance with 35 III. Adm. Code 742, Section 742.600(f), if the Tier 2 RO is less than the Tier 1 RO, then the Tier 1 RO is used.

master-data table

A. Calculation of the Dilution Factor (DF)

DF	=	1+	K*j*c	1
			1.1	

K hydraulic conductivity 0.02 cm/s 6307.2 meters/year
i hydraulic gradient 0.001 0.001
d mixing zone depth (see attached)
i inflitration rate 0.3 m/yr 0.3 m/yr
L source length (stream width)

Per EPA Comments
"Dead Creek Final Remedy Engineering
Evaluation/Feasibility Study Volume I, June 21, 2002."
Default TACO value

Segment	L (meters)1	d (meters)¹	DF
В	15	2.29	4.21
С	13	1.99	4.22
D	14	2.14	4.22
E	12	1,84	4.22
F	l 5	0.77	4.22
М	96	14.40	4.15

1 - Stream width was averaged over stream length.
"Dead Creek Final Remedy Creek Bottom Soil
Engineering Evaulation/Cost Analysis Volume II,
June 21, 2002"
d - mixing zone depth calculated according
to Equation S25 in TACO guidance, calculation
sheet attached

Summary Table of I	nput Parameters			··· -	
	Gwobj ² CLASS I (mg/L)	Koc³	Kď⁴		
1,1,2,2-Tetrachloroethane	0.000055	524			
1,4-Dichlorobenzene	0.075	617			
alpha-BHC	0.00003	1,230			
Antimony	0.006		250		
beta-BHC	0.00003	2,300			
Cadmium	0.005		390		
Chromium	0.1		4,778		
Chlorobenzene	0.1	219			
delta-BHC	0.00003	1,900			
Dieldrin	0.00002	21,400			
Heptachior epoxide	0.0002	83,200			
Nickel	0.1		2,333		
Nitrobenzene	0.0035	65			
Pentachlorophenol	0.001	592			
Zinc	5		1,731		

² - TACO regulations, Appendix B Table E, except for 1,1,2,2-tetrachloroethane, which is from Region IX PRGs. GWobj for beta-BHC and delta-BHC, assumed to be equal to alpha-BHC, as given in TACO guidance. GWobj for Chromium is for total Chromium, as given in TACO guidance.

³ - TACO regulations, Appendix C Table E, except for beta-BHC and detta-BHC, which are not reported in the TACO regulations and so, were taken from the PA Act 2 guidance.

⁴ - From Sauve, Hendershot, and Allen. 2000. Except Antimony, which is from Sheppard and Thibault March, 1990. For Antimony, it is assumed the soils are clay.

Calculating Mixing Zone

Inputs

L - source length (meters)		
Segment		
В	15	
С	13	
D	14	
Į E	12	
F	5	
М	96	
da - aquifer thickness (meters)	30	
I - infiltration rate (m/yr) 0.		
K - hydraulic conductivity (m/yr)		
	6,300	
i - hydraulic gradient	0.001	

$$d = (0.0112*L^2)^{0.5} + da (1-exp(-L*I/(K*i*da)))$$

Segment	-L*I/(K*I*da)	d
В	-0.02380952	2.29
С	-0.02063492	1.99
D	-0.02222222	2.14
Ε	-0.01904762	1.84
F	-0.00793651	0.77
М	-0.15238095	14.40

	Cw (segment F)=	0.0002	=DF segment f	*Gwobj fo	r chemical			
	ρ K _e	1.8 dry soil bulk density for sand Koc*foc soil water partition coefficient 524 granic partition coefficient for chemical						
	Koc =	524 organic partition coefficient for chemical						
	Segment F	foc 0.0085	Kd 4.476					
	θ., =	0.32						
Segment F	Revised TACO Standard 0.001081		Maximum Detect 1.00E-02	pass?	EPC/95% UCL 0.004432	pass? no	Arithmetic Mean 0.00391094	pass?

beta-BHC

Cw (segment B)= 0.0001 =DF segment B*Gwobj for chemical 0.0001 =DF segment F*Gwobj for chemical

ρ_{6 =} Κ_{ε =} 1.8 dry soil bulk density for sand Koc*foc soil water partition coefficient

Koc = 2,300 organic partition coefficient for chemical

 Segment
 foc
 Kd

 B
 0.0145
 33.372

 F
 0.0085
 19.647

θ, =

0.20 water filled soil porosity

		Maximum		EPC/95%		Arithmetic	
Revise	d TACO Standard	Detect	pass?	UCL	pass?	Mean	pass?
Segment B	0.0042	0.0077	no	0.001496	yes	1.25E-03	yes
Segment F	0.0025	0,0039	no	0,001135	yes	8.21E-04	yes

cadmium

Cw (segment B)=	0.0211 =DF segment B*Gwobj for chemical
Cw (segment C)=	0.0211 =DF segment C*Gwobj for chemical
Cw (segment D)=	0.0211 =DF segment D*Gwobj for chemical
Cw (segment E)=	0.0211 =DF segment E*Gwobj for chemical
Cw (segment F)=	0.0211 =DF segment F*Gwobi for chemical

ρ_b. 1.8 dry soil bulk density for send K_d. Koc*foc soil water partition coefficient

K_d. 390

⊕_w = 0.32 water filled soil porosity

		Maximum		EPC/95%		Arithmetic	
Revise	d TACO Standard	Detect	pass?	UCL	pass?	Mean	pass?
Segment B	8,22	54	no	26.02	no	8.25	no
Segment C	8.22	24	no	17.42	no	13.28	no
Segment D	8.22	40	no	40.00	no	19.75	no
Segment E	8.23	38	no	23.07	no	14.21	no
Segment F	8,24	57	no	27.98	no	20.31	no

chlorobenzene

0.4214 =DF segment B*Gwobj for chemical 0.4154 =DF segment M*Gwobj for chemical Cw (segment B)= Cw (segment M)=

Рь = Ка = Кос = 1,8 dry soil bulk density for sand Koc*foc soil water partition coefficient

219 organic partition coefficient for chemical

Κd Segment foc 0.0145 3.178 В 0.0194 4.244

θ, = 0.32

Maximum Maximum			Arithmetic				
Revise	d TACO Standard	Detect	pass?	EPC	pass?	Mean	pass?
Segment B	1.414039	9.7	no	1.3890	yes	0.4497	yes
Segment M	1.836707	1.2	VAS	1.2000	Ves	0.3384	Ves

chromium

Cw (segment B)=	0.4214 =DF segment B*Gwobj for chemical
Cw (segment C)=	0.4216 =DF segment C*Gwobj for chemica
Cw (segment D)=	0.4215 =DF segment D*Gwobj for chemical
Cw (segment E)=	0.4217 =DF segment E*Gwobj for chemical

ρ_b 1.8 dry soil bulk density for sand Κ_d Koc*foc soil water partition coefficient

K. 4778

O.32 water filled soil porosity

		Maximum		EPC/95%		Anthmetic	
Revised TACO Standard		Detect	pass?	UCL	pass?	Mean	pass?
Segment B	2013.66	180	yes	90.25	yes	51.27	yes
Segment C	2014.41	110	yes	58.27	yes	36.11	yes
Segment D	2014.04	57	yes	57.00	yes	49.33	yes
Segment E	2014.79	170	yes	72.72	yes	47.29	yes

delta-BHC

Cw (segment B)=	0.0001 =DF segment B*Gwobj for chemical
Cw (segment C)=	0.0001 =DF segment C*Gwobj for chemical
Cw (segment D)=	0.0001 =DF segment D*Gwobj for chemical

ρ₆ . Κ₄ . Κος = 1.8 dry soil bulk density for sand Koc*foc soil water partition coefficient

1,900 organic partition coefficient for chemical

Segment	foc	Kď
В	0.0145	27.568
С	0.0185	35.150
D	0.0180	34.200

0.32 Θ,, =

		Maximum		EPC/95%		Arithmetic	
Revised TACO Standard		Detect	pass?	UCL	pass?	Mean	pass?
Segment B	0.003508	0.0041	no	0.0006	yes	0.0005	yes
Segment C	0.004468	9.90E-04	yes	0.0010	yes	0.0007	yes
Segment D	0.004347	1.90E-03	yes	0.0019	yes	0.0008	yes

dieldrin

0.000084	=DF segment B*Gwobj for chemical								
0.000084	=DF segment C*Gwobi for chemical								
0.000084 =DF segment D*Gwobj for chemical									
0.000084	=DF segment E*Gwobj for chemical								
1.8	dry soil bulk density for sand								
Koc*foc soil water partition coefficient									
21,400	organic partition coefficient for chemical								
foc	Kd								
0.0145	310.502								
0.0185	395.900								
0.0180	385.200								
0.0166	355.691								
	0.000084 0.000084 0.000084 1.8 Koc*foc 21,400 foc 0.0145 0.0185 0.0180								

θ_w = 0.32 water filled soil porosity

		Maximum		EPC/95%		Arithmetic	
Revis	sed TACO Standard	Detect	pass?	UÇL	pass?	Mean	pass?
Segment B	0.03	0.049	no	0.008943	yes	0.00771681	yes
Segment C	0.03	0.011	yes	0.011	yes	0.00475667	yes
Segment D	0.03	0.69	no	0.69	no	0.12743333	no
Segment E	0.03	0.034	no	0.022598	yes	0.00548941	yes

hepta

Cw (segment M)= 0.0008 =DF segment M*Gwobj for chemical

ρ_b . 1.8 dry soil bulk density for sand
 K_d . Koc*foc soil water partition coefficient

Koc = 83,200 organic partition coefficient for chemical

Segment foc Kd M 0.0194 1612.416

⊖_w = 0.32

EPC/95% Arithmetic Maximum Revised TACO Standard pass? UCL Detect pass? Mean pass? Segment M 1.339603 0.86 0.8600 0.1080 yes yes yes

nickel

Cw (segment B)=	0.4214 =DF segment B*Gwobj for chemical
Cw (segment C)=	0.4216 =DF segment C*Gwobj for chemical
Cw (segment D)=	0.4215 =DF segment D*Gwobj for chemical
Cw (segment E)=	0.4217 =DF segment E*Gwobi for chemical
Cw (segment F)=	0.4222 =DF segment F*Gwobj for chemical
Cw (segment M)=	0.4154 =DF segment M*Gwobj for chemical

ρ_b 1.8 dry soil bulk density for sand K_d Koc*foc soil water partition coefficient

K₄. 2333

e a construction of the c

	Revised TACO Standard	Maximum Detect	pass?	EPC/95% UCL	pass?	Arithmetic Mean	pass?
Segment B	983.27	630	yes	228.44	yes	192	yes
Segment C	983.63	570	yes	357.19	yes	263	yes
Segment D	983.45	530	yes	530.00	yes	287	yes
Segment E	983.82	600	yes	267.07	yes	181	yes
Segment F	985,10	630	yes	329.80	yes	167	yes
Segment M	969.10	1500	no	1260.59	no	480	yes

nitrobenzene

Cw (segment B)= 0,0148 =DF segment B*Gwobj for chemical

Ph. 1.8 dry soil bulk density for sand K_d. Koc*foc soil water partition coefficient

Koc = 65 organic partition coefficient for chemical

Segment foc Kd B 0.0145 0.937

Θ_ω = 0.32

 Maximum
 EPC/95%
 Arithmetic

 Revised TACO Standard
 Detect
 pass?
 UCL
 pass?
 Mean
 pass?

 Segment B
 0.016448
 0.52
 no
 0.1321
 no
 0.1266
 no

pentachlorophenol

0.0042 =DF segment B*Gwobj for chemical Cw (segment B)= Cw (segment M)= 0.0042 =DF segment M*Gwobi for chemical

ρ₆ . Κ₄ . Κος = 1.8 dry soil bulk density for sand Koc*foc soil water partition coefficient

592 organic partition coefficient for chemical

Segment 0.0145 8.590 0.0194 11.473

θ, = 0.32

		Maximum		EPC/95%		Arithmetic	
Revised	d TACO Standard	Detect	pass?	UCL	pass?	Mean	pass?
Segment B	0.036948	44	no	0.2647	no	0.9874	no
Segment M	0.048392	0.29	no	0.1928	no	0.0637	no

zinc

Cw (segment D)= 21.0754 =DF segment D*Gwobj for chemical

 $\rho_{\text{b.r.}}$ 1.8 dry soil bulk density for sand $K_{\text{d.r.}}$ Koc*foc soil water partition coefficient

K₄. 1731

... = 0.32 water filled soil porosity

 Maximum
 Arithmetic

 Revised TACO Standard
 Detect
 pass?
 EPC
 pass?
 Mean
 pass?

 Segment D
 36485.20
 8200
 yes
 8200.00
 yes
 4100
 yes

0.3115 ≃DF segment M*Gwobj for chemical Cw (segment M)= ρ... Κ... Koc = 1.8 dry soil bulk density for sand Koc*foc soil water partition coefficient 617 organic partition coefficient for chemical Κđ Segment foc

0.0145 8.952

0.32

Maximum Arithmetic Revised TACO Standard Detect pass? EPC pass? Mean pass? Segment M 2.84 4.1 no 4.1 no 0.97833333

alpha-BHC

0.0001 =DF segment B*Gwobj for chemical 0.0001 =DF segment M*Gwobj for chemical Cw (segment B)≠ Cw (segment M)=

ρ_{υ •} Κ_{υ •} Κος = 1.8 dry soil bulk density for sand Koc*foc soil water partition coefficient

2300 organic partition coefficient for chemical

foc Segment 33.372 В 0.0145 М 0.0194 44.574

0.20 water filled soil porosity θ, =

		Maximum		ELC/32%			
Revised 1	ACO Standard	Detect	pass?	UCL	pass?	Mean	pass?
Segment B	0.004	2.90E-03	yes	0.000699	yes	5.85E-04	yes
Segment M	0.006	2.30E-03	yes	0.0023	yes	1.48E-03	yes

antimony

	Cw (segment M)=	0.0249	=DF segment M	*Gwobj fo	or chemical			
	ρ	1.8	dry soil bulk den	sity for sa	and			
	K _d .	Koc*foc	soil water partition	on coeffic	ient			
	K ₄ .	250						
	θ=	0.32	water filled soil p	orosity				
			Maximum		EPC/95%		Arithmetic	
	Revised TACO Standard		Detect	pass?	UCL	pass?	Mean	pass?
Segment M	6.23		6.80	no	5.27	yes	2.91	yes

C. Input values for Taco Equation

Remediation Objective (mg/kg) = C_w *(K_d +((Θ_w + Θ_a *H')/ ρ_b)) For Θ_a = 0, Remediation Objective (mg/kg) = C_w *(K_d +(Θ_w / ρ_b))

 $\begin{array}{lll} \textbf{C}_{\textbf{w}} & \textbf{DF°GWob} \\ \textbf{\Theta}_{\textbf{s}} = & 0 \text{ air filled porosity for sand, assumed saturated.} \\ \textbf{\Theta}_{\textbf{w}} = & 0.32 \text{ water filled soil porosity.} \\ \textbf{\rho}_{\textbf{b}} = & 1.8 \text{ dry soil bulk density for sand, TACO default for sand.} \\ \textbf{K}_{\textbf{d}} = & \textbf{Koc ° foc For organics, fixed value for inorganics.} \\ \end{array}$

 Segment
 foc⁴

 B
 0.0145

 C
 0.0185

 D
 0.0180

 E
 0.0166

 F
 0.0085

 M
 0.0194

⁶ - foc was calculated from TOC field data, foc was averaged over each stream segment.

APPENDIX B2

ORIGINAL EVALUATION OF POTENTIAL LEACHING FROM CREEK BOTTOM SOILS

APPENDIX G SOIL TO GROUNDWATER EVALUATION

1.0 INTRODUCTION

The objective of this evaluation is to characterize the potential for residual concentrations of constituents detected in creek bottom soils to leach to underlying groundwater. This evaluation was conducted by comparing detected constituent concentrations in creek bottom soils to the Illinios Environmental Protection Agency (IEPA) Tiered Approach to Corrective Action Objectives (TACO) (IEPA, 1998) Tier 1 Remediation Objectives (ROs) for the soil to groundwater pathway for Class 1 groundwater. For those constituents that exceed Class 1 Tier 1 SGW ROs, concentrations were compared to calculated Class 1 Tier 2 SGW ROs. Since Dead Creek is divided into five segments (Creek Segments B, C, D, E and F), these comparisons were done on a creek segment by creek segment basis. Comparisons for Site M, a small lagoon located on the east bank of Creek Segment B just north of Judith Lane, were done separately from the creek segments.

Before addressing the ROs, it is important to put this potential exposure pathway (i.e., potential constituent leaching to groundwater and subsequent exposure to constituents in groundwater by a human receptor) into context. Dead Creek can best be characterized as an intermittent stream in a highly industrialized section of Sauget and Cahokia, Illinois. There is a groundwater use restriction for this area that, among other things, prevents the drinking of water from this aquifer (see Appendix S of ENSR, 2001). Therefore, there is no direct human contact with groundwater. In addition, this analysis is predicated on several worst-case assumptions regarding the hydrology of the site and use of groundwater, including the assumption that Dead Creek discharges surface water to the groundwater.

The Class I Tier 1 evaluation is presented in Section 2, the Class I Tier 2 evaluation is presented in Section 3. The results are discussed in Section 4, Section 5 provides a summary, and Section 6 provides references.

2.0 CLASS I TIER 1 EVALUATION

For the first step in the SGW pathway evaluation, the maximum detected concentration of each constituent in creek bottom soils for each segment is compared to TACO Class I Tier 1 SGW ROs, as shown in Table G-1. Table G-2, which is summarized below, lists constituents whose maximum detected concentration exceeds Class 1 Tier 1 SGW ROs in each creek segment:

Creek Segment B

VOCs Benzene, Chlorobenzene, Tetrachloroethane

SVOCs 4-Chloroaniline, Carbazole; 1,2-Dichlorobenzene; 1,4-Dichlorobenzene;

2,4-Dichlorophenol, N-Nitrosodiphenylamine, Nitrobenezene, Pentachlorophenol;

1,2,4-Trichlorobenzene; 2,4,6-Trichlorophenol

Pesticides

alpha-BHC, beta-BHC, delta-BHC, Dieldrin

Metals

Arsenic, Cadmium, Chromium, Nickel, Silver, Zinc

Site M

VOCs

Benzene, Chlorobenzene

SVOCs

1,4-Dichlorobenzene, Pentachlorophenol

Pesticides

alpha-BHC, Heptaclor epoxide

Metals

Antimony, Chromium, Nickel

Creek Segment C

Pesticides

delta-BHC, Dieldrin

Metals

Cadmium, Chromium, Nickel

Creek Segment D

Pesticides

delta-BHC, Dieldrin

Metals

Cadmium, Chromium, Nickel, Zinc

Creek Segment E

SVOCs

Pentachlorophenol

Pesticides

alpha-BHC, Dieldrin

Metals

Cadmium, Chromium, Nickel, Silver

Creek Segment F

VOCs

1,1,2,2-Tetrachloroethane

SVOCs

Pentachlorophenol

Pesticides

beta-BHC, Dieldrin

Metals

Cadmium, Nickel, Zinc

Because an evaluation of the maximum detected concentration provides a very conservative, or worst case, estimate of leaching to groundwater, the average (arithmetic mean) concentration for each of the constituents listed in **Table G-2** is compared to the Class I Tier 1 SGW ROs, as shown in **Table G-3** and summarized below:

Creek Segment B

SVOCs

Nitrobenezene, Pentachlorophenol

Pesticides

alpha-BHC, beta-BHC, delta-BHC, Dieldrin

Metals

Cadmium, Chromium, Nickel

Site M

SVOCs

Pentachlorophenol

Pesticides

alpha-BHC

Creek Segment C

Pesticides

delta-BHC, Dieldrin

Metals

Cadmium, Nickel

Creek Segment D

Pesticides

delta-BHC, Dieldrin

Metals

Cadmium, Chromium, Nickel

Creek Segment E

Pesticides

Dieldrin

Metals

Cadmium, Chromium, Nickel

Creek Segment F

VOCs

1,1,2,2-Tetrachloroethane

Pesticides

beta-BHC

Metals

Cadmium

These constituents are further evaluated in Tier 2.

3.0 CLASS I TIER 2 EVALUATION

A Class I Tier 2 SGW RO was calculated for each occurrence where the average concentration exceeded the Class I Tier 1 SGW RO exceedance in each creek segment using equation S17 in the IEPA TACO guidance document (IEPA, 1998).

3.1 Tier 2 Equations

The Tier 2 SGW RO equation follows as do supporting equations.

RO

Cw *(Kd +($(\theta w + \theta a^*H')/\rho_b$))

(Eq. S17. IEPA, 1998)

Where: 0w - water filled soil porosity

θa – air filled porosity, assumed to be 0

H' - Henry's law constant

ρ_b – dry soil bulk density

Kd - soil to water partition coefficient

Because creek bottom soils are typically saturated, θa

= 0 and the RO equation becomes:

RO

Cw *(Kd +(θ w/ ρ _b))

(Eq. S18. IEPA, 1998)

Where: Cw - target soil leachate concentration

Gwobj - Class I groundwater objective

$$DF = 1 + \frac{K * i * d}{I * L}$$

(Eq. 22. IEPA, 1998)

Where:DF - dilution factor for transport and mixing of soil water to groundwater

K - saturated hydraulic conductivity

i - hydraulic gradient

d - mixing zone depth in groundwater

I - infiltration rate

L - source length parallel to groundwater flow

Kd(L/kg) for inorganics = Concentration constituent in soil (mg/kg)

(Sheppard and Thibault, 1990) Concentration of constituent in extractant (mg/L)

However, literature values are typically used for Kd.

Kd(L/kg) for organics = Koc * foc

(Eq. S19. IEPA, 1998) Where: Koc – organic carbon partition coefficient

foc - organic carbon content of soil (field data)

3.2 Tier 2 Input Variables

This section describes some of the input variables used in the development of the Class I Tier 2 SGW ROs. In the calculation of the Tier 2 SGW ROs, non-default values (i.e., site-specific) were used for DF, foc, and Kd. These are discussed below.

Source Length, L

Based on groundwater flow direction, source length is the length of the area of interest that is parallel to groundwater flow. For this calculation, this is equivalent to the stream width of Dead Creek. Based on the maps in Section 2 of this report ("Creek Bottom Soil Engineering Evaluation/Cost Analysis Volume II Human Health Risk Assessment"), average widths were calculated for each creek segment. Four to seven widths were measured and averaged for each creek segment. Average stream widths ranged from 5 meters in CS-F to almost 100 meters for Site M, the lagoon. The creek widths are summarized in the spreadsheets in Attachment A.

Organic Carbon Content of Soils, foc

Values for organic carbon content of soils, foc, are used in the Tier 2 SGW RO equations for organic constituents. Creek bottom soils were sampled at a number of locations in each creek segment and analyzed for Total Organic Carbon (TOC). TOC was converted to a decimal percent to arrive at an foc value. Average foc was calculated for each creek segment. The averages ranged from 0.0085 in CS-F to 0.019 at Site M. The foc's are shown on Table G-4 and are used in the calculations in Attachment A.

Soil-Water Partition Coefficient, Kd

The TACO program provides default Kd values for calculating the Tier 1 ROs. As an alternative to a default value, when the constituent of interest is a metal, a Kd value from a published table may be used. In their article, "Solid Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter," Sauve, Hendershot and Allen (2000) cite Kd values for a number of metals, including the constituents present in the creek bottom soils (barium, cadmium, copper, mercury, nickel, selenium, zinc). The median Kd value cited by Sauve, et al., for each of these constituents was selected for use in the Tier 2 calculations. The selected values are listed in Attachment A.

3.3 Tier 2 Results

Table G-3 shows those constituents whose average concentrations are greater than the Class I Tier 1 SGW RO. The Class I Tier 2 SGW RO was then developed for each of these constituents using the equations and inputs presented above. The calculations are presented in Attachment A. The results are provided on Table G-3. The following creek segments had detections of constituents that were greater than the Class I Tier 2 SGW ROs.

Revision 1

- In CS-B, the average concentrations of cadmium, dieldrin, nitrobenzene, and pentachlorophenol are greater than Class I Tier 2 SGW ROs.
- In CS-C, the average concentration of cadmium is greater than the Class I Tier 2 SGW RO.
- In CS-D, the average concentrations of cadmium and dieldrin are greater than the Class I Tier 2 SGW ROs.
- In CS-E, the average concentration of cadmium is greater than Class I Tier 2 SGW RO.
- In CS-F, the average concentrations of 1,1,2,2-tetrachloroethane and cadmium are greater than the Class I Tier 2 SGW ROs.
- At Site M, the average concentration of pentachlorophenol is greater than the Class I Tier 2 SGW RO.

4.0 DISCUSSION

The TACO SGW ROs are developed based on models that assume certain behaviors for constituents in soils to predict their potential impact on underlying groundwater quality. The physical and chemical interactions of constituents in soils are complex, and the models used to predict this behavior are by necessity simplistic and are by design conservative, i.e., the models are designed to over- rather than under-estimate constituent migration. While the models are used as conservative screening tools, direct measurements of soil and groundwater constituent concentrations provide the best indicators of potential impact. Leaching to groundwater can take time before an impact in groundwater can be measured. Recent sources or releases would not be expected to have immediate impacts on groundwater quality, and conversely, if relatively old releases had the potential to impact groundwater quality, that impact should be easily determined by sampling downgradient groundwater. Ideally, wells both adjacent and downgradient of a potential release area would be used to assess potential groundwater impact.

The soil to groundwater pathway evaluation presented here used the TACO models to evaluate the maximum detected concentration of each constituent in creek bottom soils of each creek segment with respect to a Class I, or drinking water, aquifer. As shown in **Table G-2**, a number of exceedances were identified for each creek segment. These constituents were evaluated using Tier 2 methods, and as noted in Section 3.3, 1,1,2,2-tetrachloroethane, cadmium, dieldrin, nitrobenzene and pentachlorophenol were identified as exceeding Class 1 Tier 2 SGW ROs.

Tier 2 methodology predicts that cadmium, dieldrin, nitrobenzene and pentachlorophenol will leach from creek bottom soils in Creek Segment B at concentrations higher than their respective Class 1 Tier 2 SGW ROs. As part of the Sauget Area 1 EE/CA and RI/FS

evaluation, a number of wells were sampled in the vicinity of CS-B and Site M. These are shown on Figure 3-2 of ENSR, 2001, and this figure is included here as Attachment B. Those wells that are downgradient of CS-B and Site M, and that are not located within or immediately adjacent to Site G, are listed on Table G-5. There are 15 wells total. Two of the wells, EEG-103 and EEG-105, are immediately downgradient of CS-B, and EEG-105 is also immediately downgradient of Site M. The remaining wells are at varying downgradient distances. Table G-5 also compares detected concentrations of 1,1,2,2-tetrachloroethane, cadmium, dieldrin, nitrobenzene and pentachlorophenol in each well to TACO Class I groundwater ROs. The results of the comparison are summarized below:

AA-SW-S1	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
AA-SW-S2	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
AA-SW-S3	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
AA-GHL-S2	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
AA-GHL-S3	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
EEG-104	Dieldrin was detected below the Class I Groundwater RO.
EEG-103	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
EEG-105	Pentachlorophenol was detected below the Class I Groundwater RO.
EEG-111	Pentachlorophenol was detected below the Class I Groundwater RO.
SGW-S1	Dieldrin was detected below the Class I Groundwater RO.
DW-MCDO	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
DW-SCHM	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
DW-SETT	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.
DW-WRIG	Cadmium was detected below the Class I Groundwater RO.
SGW-2	None of the constituents exceeding Class 1 Tier 2 SGW ROs were detected.

As the constituents in both the sediments and the creek-bottom soils from all of the creek segments have been in place for many years, it can conservatively be assumed that ample time has occurred for leaching of constituents to groundwater, and that if the constituents in CS-B and Site M have served as a source to underlying groundwater, that the groundwater data would verify this.

None of the constituents with Class 1 Tier 1 SGW RO exceedances in CS-B and Site M were detected in downgradient wells at concentrations exceeding TACO Class 1 Groundwater ROs. It is also important to note that the majority of these constituents were not detected in wells downgradient of CS-B and Site M. Therefore, although the conservative TACO Class I Tier 1 SGW evaluation would indicate that the creek bottom soils could serve as a source of constituents to underlying groundwater, the groundwater data do not bear this out.

There are no wells located downgradient from the other creek segments. However, the conditions at CS-B and Site M can be extrapolated to these other segments. **Table G-6** presents the concentrations of constituents identified as exceedances in CS-C through CS-F to concentrations in CS-B and Site M. The concentrations are all below those in CS-B and Site M with the exceptions noted below.

Dieldrin was detected at concentrations approximately 10-fold higher in CS-D than in CS-B creek bottom soils, however it seems to have wide-spread occurrence in the area and it is not associated with the Sauget Area 1 source areas.

Zinc has a maximum detected concentration in CS-F that is greater than the maximum detected concentration in CS-B, however, the average and 95% UCL concentrations for the two segments are similar, therefore, it is concluded that zinc does not pose a risk to underlying groundwater quality.

Silver concentrations in CS-E are above, but only slightly above those in CS-B. In addition, the frequency of detection was low in this segment (3:17), therefore, it is concluded that silver does not pose a risk to underlying groundwater quality.

And finally, 1,1,2,2-tetrachloroethane was detected only once in CS-F, and was not detected in CS-B. In fact, it was only detected once in the entire stretch of the creek. Therefore, it is concluded that 1,1,2,2-tetrachloroethane does not pose a risk to underlying groundwater quality.

5.0 SUMMARY

In summary, although the conservative TACO Class I Tier 1 and Tier 2 SGW RO screening process would suggest that the creek bottom soils remaining in Dead Creek and Site M may have the potential to adversely affect underlying groundwater quality, review of actual groundwater data downgradient of the creek does not bear this out. In addition, there is a groundwater use restriction for this area that, among other things, prevents the drinking of water from this aquifer (see Appendix S of ENSR, 2001). Therefore, there is no direct human contact with groundwater. Therefore, it is concluded that the creek bottom soils in CS-B, CS-C, CS-D, CS-E, CS-F and Site M are not serving as a source of constituents to underlying groundwater and do not pose a threat to human health via this pathway.

6.0 REFERENCES

- ENSR. 2001. Sauget Area 1 EE/CA and RI/FS, Volume II, Human Health Risk Assessment, Sauget Area 1, Sauget and Cahokia, Illinois. June 2001.
- IEPA. 1998. Tiered Approach to Corrective Action Objectives. Title 35, Subtitle G, Chapter I, Subchapter J, Part 742. As amended June 8, 1998. Illinois Environmental Protection Agency.
- 25 PA Code Chapter 250. Land Recycling and Environmental Standards Act (Act 2) Administrative Rules and Regulations. Pennsylvania Bulletin. Vol. 27. 4181-4285. (November 24, 2001).
- Sauve, Sebastian, William Hendershot, and Herbert E. Allen. 2000. Solid Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. Environmental Science and Technology. 34(7): 1125-1131.

TABLES

Class I screen - Using pH specific values for inorganics and ionizable organics.

Class I scree	n - Using pH	specific values for inorganics and	lonizable	organics.										
1	1	}	1							1	Class I		l	1
1						Maximum				ĺ	TACO Tier I Soll-		ĺ	1 1
		i]			Detected	Essential	Sediment		}	to-groundwater			1
	ł			Frequency of	Average	Concentration	Nutrient	Background (BK)	ls ls	Pass	(SGW)	te .	H	
Area	CAS#	Constituent	Unite	Detection	(Avg)	(Mex)	(EN)?	Concentration	Max>BK?	EN/BK?	Concentration	Max>SGW?	COPC7	Reason
CBS-CSB	71-55-6	1,1,1-Trichloroethane	mg/kg	3:48:49	4.15E-03	2.30E-02	No	ND		No	2.00E+00	No	No	<sgw< th=""></sgw<>
CBS-CSB	120-82-1	1,2,4-Trichlorobenzene	mg/kg	6:49:49	2.28E+00	8.00E+01	No	ND	••	No	5.00E+00	Yes	Yes	>SGW
CBS-CSB	95-50-1	1,2-Dichlorobenzene	mg/kg	6:49:49	1.67E+00	5.30E+01	No	ND		No	1.70E+01	Yes	Yes	>SGW
CBS-CSB		1,2-Dichloroethene (total)	mg/kg	1:48:49	3.85E-03	1.20E-02	No	ND		No	4.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSB		1,3-Dichlorobenzene	mg/kg	1:4:49	1.00E-01	1.00E-01	No	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB		1,4-Dichlorobenzene	mg/kg	7:49:49	2.93E-01	5.50E+00	No	ND		No	2.00E+00	Yes	Yes	>SGW_
CBS-CSB		2,3,7,8-TCDD-TEQ	mg/kg	49:49:49	2.42E-04	4.54E-03	No	1.24E-05	Yes	No	NA NA	No	No	NA NA
CBS-CSB		2,4,5-T	mg/kg	12:48:49	2.42E-04	6.10E-01	No	ND		No	NA NA	No	No	NA_
CBS-CSB		2,4,5-TP (Silvex)	mg/kg	3:3:49	2.42E-04	2.00E-03	No	ND		No	1.10E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB		2,4,5-Trichlorophenol	mg/kg_	1:49:49	2.42E-04	2.40E-01	No	ND		No	2.70E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB		2,4,6-Trichlorophenol	mg/kg	5:49:49	2.42E-04	4.30E+00	No	ND		No	1.50E-01	Yes	Yes	>SGW_
CBS-CSB		2,4-D	mg/kg	3:47:49	2.42E-04	1.40E-01	No	2.03E-02	Yes	No	1.50E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB		2,4-DB	mg/kg	2:47:49	7.60E-03	5.70E-02	No	ND		No	NA	No	No	NA NA
CBS-CSB		2,4-Dichlorophenol	mg/kg	5:49:49	2.69E-01	6.60E+00	No	ND		No	1.00E+00	Yes	Yes	>SGW
CBS-CSB CBS-CSB		2-Butanone (MEK)	mg/kg	29:48:49	3.50E-02	6.10E-01	No	4.99E-02	Yes	No	NA COTION	No	No	NA NA
CBS-CSB		2-Chiorophenal	mg/kg	3:49:49	1.25E-01	5.10E-01	No	ND ND		No No	3.90E+00 NA	No	No	<8GW
CBS-CSB		2-Hexanone	mg/kg	1:48:49	1.98E-02 3.53E-01	7.70E-02 7.30E+00	No No	ND ND		No	8.40E+01	No No	No No	NA <3GW
CBS-CSB		2-Methylnaphthalene 3&4Methylphenol	mg/kg mg/kg	3:49:49 1:49:49	1.48E-01	1.60E+00	No	ND		No	1.50E+01	No	No	₹SGW
CBS-CSB		4,4'-DDD	mg/kg	3:49:49	1.60E-02	4,70E-01	No	ND		No	1,60E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB		4.4'-DDE	mg/kg	2:44:49	3.59E-03	3.50E-02	No	ND		No	5.40E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB		4.4'-DDT	mg/kg	15:48:48	1.83E-02	1.60E-01	No -	ND ND		No	3.20E+01	No	No	- <sgw< td=""></sgw<>
CBS-CSB		4-Chloroaniline	mg/kg	5:49:49	5.94E-01	1.10E+01	No	ND		No	7.00E-01	Yes	Yes	>SGW
CBS-CSB		4-Methyl-2-pentanone (MIBK)	mg/kg	5:48:49	2.03E-02	1.10E-01	No	ND		No	NA NA	No	No	NA NA
CBS-CSB		4-Nitroaniline	mg/kg	2:49:49	7.59E-01	9,00E+00	No	ND		No	NA NA	No	No	NA NA
CBS-CSB		4-Nitrophenol	mg/kg	1:1:49	4.40E-01	4.40E-01	No	ND		No	NA NA	No	No	NA NA
CBS-CSB		Acenaphthene	mg/kg	2:49:49	1.32E-01	8.60E-01	No	ND		No	5.70E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB	208-96-8	Acenaphthylene	mg/kg	1:49:49	1.20E-01	2.40E-01	No	ND		No	5.70E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB		Acetone	mg/kg	38:48:49	1.16E-01	4.70E-01	No	1.56E-01	Yes	No	1.60E+01	No	No	<\$GW
CBS-CSB	309-00-2	Aldrin	mg/kg	1:1:49	3.60E-04	3.60E-04	No	ND	**	No	5.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSB	319-84-8	alpha-BHC	mg/kg	9:44:49	5.85E-04	2.90E-03	No	ND		No	5,00E-04	Yes	Yes	>SGW
CBS-CSB	7429-90-5	Aluminum	mg/kg	49:49:49	9.35E+03	2.00E+04	No	2.90E+04	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSB		Anthracene	mg/kg	4:49:49	1.48E-01	1.40E+00	No	ND		No	1.20E+04	No	No	<sgw< td=""></sgw<>
CBS-CSB	7440-36-0	Antimony	mg/kg	4:46:49	1.45E+00	3.90E+00	No	2.75E+00	Yes	No	5.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB	7440-38-2	Arsenic	mg/kg	49:49:49	9.72E+00	4.40E+01	No	1.44E+01	Yes	No	2.90E+01	Yes	Yes	>SGW
CBS-CSB	7440-39-3	Barlum	mg/kg	49:49:49	2.98E+02	1.50E+03	No	4.13E+02	Yes	No	1.60E+03	No	No	<\$GW
CBS-CSB	71-43-2	Benzene	mg/kg	19:49:49	8.31E-03	1.80E-01	No	ND		No	3.00E-02	Yes	Yes	>SGW
CBS-CSB		Benzo(a)anthracene	mg/kg	4:49:49	1.69E-01	1.90E+00	No	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB	50-32-8	Benzo(a)pyrene	mg/kg	7:49:49	1.09E-01	1.20E+00	No	ND		No	8.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB		Benzo(b)fluoranthene	mg/kg	6:49:49	1.56E-01	1.40E+00	No	ND		No	5.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB	191-24-2	Benzo(g.h,i)perylene	mg/kg	6:49:49	1.38E-01	8.90E-01	No	ND	••	No	4.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSB	207-08-9	Benzo(k)fluoranthene	mg/kg	5:49:49	1.49E-01	9.00E-01	No	ND		No	4.90E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB	7440-41-7	Beryllium	mg/kg	36:49:49	5.39E-01	1.30E+00	No	1.56E+00	No	Yes	6.30E+01	No	No	<sgw< td=""></sgw<>

Table G-1
Tier 1 Class I Soil-to-Groundwater TACO Screen
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Area	CAS#	Constituent	Units	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Easential Nutrient (EN)?	Sediment Background (BK) Concentration	ls Max>BK?	Pass EN/BK?	Class I TACO Tier I Soli- to-groundwater (SGW) Concentration	ls Max>SGW?	COPC7	Reason
CBS-CSB		beta-BHC	mg/kg	10:46:49	1.25E-03	7.70E-03	No	ND	-	No	5.00E-04	Yes	Yes	>SGW
CBS-CSB		Bis(2-ethylhexyl)phthalate	mg/kg	5:49:49	1.77E+00	8.10E+01	No	ND		No	3.60E+03	No	No	<sgw< td=""></sgw<>
CBS-CSB	85-68-7	Butylbenzylphthalate	mg/kg	2:49:49	1.80E-01	3.20E+00	No	ND		No	9.30E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB	7440-43-9	<u> </u>	mg/kg	46:49:49	8.25E+00	5,40E+01	No	8.30E-01	Yes	No	7.50E+00	Yes	Yes	>SGW
CBS-CSB	7440-70-2		mg/kg	49:49:49	6.49E+03	2.10E+04	Yes	2.70E+04	No	Yes	NA .	No	No	EN
CBS-CSB	86-74-8	Carbazole	mg/kg	1:49:49	1.28E-01	6.20E-01	No	ND	••	No	6.00E-01	Yes	Yes	>SGW
CBS-CSB	75-15-0	Carbon disulfide	mg/kg	19:48:49	1.10E-02	7.70E-02	No	ND		No	3.20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB	108-90-7	Chlorobenzene	mg/kg	38:49:49	4.50E-01	9.70E+00	No	ND	•	No	1.00E+00	Yes	Yes	>SGW
CBS-CSB	67-66-3	Chloroform	mg/kg	1:5:49	2.72E-03	3.10E-03	No	ND		No	6.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSB		Chromium	mg/kg	49:49:49		1.80E+02	No	4.00E+01	Yes	No	3.80E+01	Yes	Yes	>SGW
CBS-CSB	218-01-9		mg/kg	5:49:49	1.67E-01	1.90E+00	No	ND	••	No	1.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB	7440-48-4		mg/kg	49:49:49		2.30E+01	No	1.72E+01	Yes	No	NA NA	No	No	NA NA
CBS-CSB	7440-50-8		mg/kg	49:49:49		1.00E+04	No	3.80E+01	Yes	No	1.30E+05	No	No	<sgw< td=""></sgw<>
CBS-CSB	57-12-5	Cyanide	mg/kg	3:49:49	3.79E-01	1.10E+00	No	ND	••	No	4.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB	75-99-0	Dalapon	mg/kg	1:5:49	3.95E-02	4.10E-02	No	ND ND		No	8.50E-01	No No	No	<sgw< td=""></sgw<>
CBS-CSB	319-86-8	delta-BHC	mg/kg	2:44:49	5.27E-04	4.10E-03	No	ND	**	No	5.00E-04	Yes	Yes	>SGW
CBS-CSB	84-74-2	di-n-Butylphthalate	mg/kg	7:49:49	1.15E-01	2.10E-01	No	ND	:-	No	2.30E+03	No	No	<sgw< td=""></sgw<>
CBS-CSB		Dibenzo(a,h)anthracene	mg/kg	3:49:49	7.20E-02	3.40E-01	No.	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB	·	Dibenzoluran	mg/kg	1:49:49	1.48E-01	1.60E+00	No	ND		No	NA NA	No	No	NA
CBS-CSB	1918-00-9	·	mg/kg	12:12:49	2.84E-03	5.30E-03	No	ND		No	NA	No	No	NA
CBS-CSB		Dichlorprop	mg/kg	1:1:49	6.60E-03	6.60E-03	No	ND	••	No	NA NA	No	No	NA NA
CBS-CSB	60-57-1	Dieldrin	mg/kg	8:47:49	7.72E-03	4.90E-02	No	ND		No	4.00E-03	Yes	Yes	>SGW
CBS-CSB		Endosulfan II	mg/kg	1:42:49	2.60E-03	1.00E-02	No	ND	<u> </u>	No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB		Endosulian sulfate	mg/kg	1:44:49	2.85E-03	1.20E-02	No	ND	··	No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB		Endrin ketone	mg/kg	3:3:49	9.57E-04	1.50E-03	No	ND	••	No	1.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB		Ethylbenzene	mg/kg	7:49:49	1.14E-01	3.20E+00	No	ND		No	1.30E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB	206-44-0	Fluoranthene	mg/kg	9:49:49	2.35E-01	4.00E+00	No	ND		No	4.30E+03	No	No	<sgw< td=""></sgw<>
CBS-CSB	86-73-7	Fluorene	mg/kg	2:49:49	1.86E-01	3.50E+00	No	ND		No	5.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB	58-89-9	gamma-BHC (Lindane)	mg/kg	10:40:49	1.09E-03	2.30E-03	No	ND	••	No	9.00E-03	No	No	<sgw< td=""></sgw<>
CBS-CSB		gamma-Chlordane	mg/kg	2:2:49	3.90E-04	4.40E-04	No	ND	••	No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB		Heptachlor	mg/kg	3:32:49	1.10E-03	1.20E-03	No	ND		No	2.30E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB	+	Heptachlor epoxide	mg/kg	14:49:49	1.43E-02	4.10E-01	No	ND		No	7.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSB		Indeno(1,2,3-cd)pyrene	mg/kg	4:49:49	1.39E-01	8.30E-01	No	ND	**	No	1.40E+01	No	No	<sgw< td=""></sgw<>
CBS-CSB	7439-89-6	 	mg/kg		1.38E+04	2.80E+04	Yes	4.13E+04	No	Yes	NA NA	No	No	EN
CBS-CSB	7439-92-1	Lead	mg/kg	49:49:49		7.00E+02	No	4.38E+01	Yes	No	NA NA	No	No	NA NA
CBS-CSB	7439-95-4	Magnesium	mg/kg	49:49:49		6.90E+03	Yes	1.03E+04	No	Yes	NA	No	No	EN
CBS-CSB		Manganese	mg/kg	49:49:49		5.30E+02	No	1.42E+03	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSB	7085-19-0		mg/kg	3:47:49	1.61E+00	6.10E+00	No_	ND	••	No	NA .	No	No	NA
CBS-CSB	7439-97-8	+	mg/kg	48:49:49	1.34E-01	8.40E-01	No	9.60E-02	Yes	No	2.10E+00	No	No	<sgw< td=""></sgw<>
CBS-CSB		Methoxychlor	mg/kg	6:6:49	1.72E-03	6.60E-03	No	ND	•-	No	1.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSB	75-09-2	Methylene chloride	mg/kg	4:6:49	2.39E-03	2.90E-03	No	ND		No	2.00E-02	No	No	<sgw< td=""></sgw<>
CBS-CSB		Molybdenum	mg/kg	27 : 49 : 49	7.79E-01	2.80E+00	No	8.90E-01	Yes	No	NA NA	No	No	NA NA
CBS-CSB	86-30-6	N-Nitrosodiphenylamine	mg/kg	4:49:49	1.37E-01	1.20E+00	No	ND		No	1.00E+00	Yes	Yes	>SGW

Table G-1
Tier 1 Class 1 Soll-to-Groundwater TACO Screen
Sauget Area 1 - Creek Bottom Solls
Human Health Risk Assessment

Class I screen - Using pH specific values for inorganics and ionizable organics.

	1	specific values for inorganics and	7 1011122010						Γ		Class I	Γ		
Area	CAS#	Constituent	Units	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration	is Max>BK?	Pass EN/BK?	TACO Tier i Soli- to-groundwater (SGW) Concentration	ts Max>SGW?	COPC1	Resson
CBS-CSB	91-20-3	Naphthalene	mg/kg	5:49:49	2.61E-01	6.00E+00	No	ND		No	8.40E+01	No	No	<sgv< td=""></sgv<>
CBS-CSB	7440-02-0	Nickel	mg/kg	49:49:49	1.92E+02	6.30E+02	No	4.28E+01	Yes	No	1.30E+02	Yes	Yes	>SGW
CBS-CSB	98-95-3	Nitrobenzene	mg/kg	2:49:49	1.27E-01	5.20E-01	No	ND	•	No	1.00E-01	Yes	Yes	>SGW
CBS-CSB	87-86-5	Pentachlorophenol	mg/kg	37:49:49	9.87E-01	4.40E+01	No	NÇ		No	3.00E-02	Yes_	Yes	>SGW
CBS-CSB		Phenanthrene	mg/kg	6:49:49	3.01E-01	7.00E+00	No	ND	<u></u>	No	1,20E+04	No	No	<sgv< td=""></sgv<>
CBS-CSB	108-95-2	Phenol	mg/kg	3:49:49	1.85E-01	3.40E+00	No	ND		No	1.00E+02	No	No	<\$GV
CBS-CSB	7440-09-7	Potassium	mg/kg	49:49:49	1.76E+03	3.20E+03	Yes	4.20E+03	No	Yes	NA NA	No	No	EN
CBS-CSB	129-00-0	Pyrene	mg/kg	5:49:49	2.42E-01	4.00E+00	No	ND		No	4.20E+03	No	No	<sgv< td=""></sgv<>
CBS-CSB	7782-49-2	Selenium	mg/kg	2:49:49	8.09E-01	4.50E+00	No	ND	_	No	5,20E+00	No	No	<sgv< td=""></sgv<>
CBS-CSB	7440-22-4	Silver	mg/kg	10:49:49	7.78E-01	9.00E+00	No	ND		No	8,50E+00	Yes	Yes	>8GW_
CBS-CSB	7440-23-5	Sodium	mg/kg	49:49:49	1.99E+02	6.70E+02	Yes	ND		Yes	NA NA	No	No	EN
CBS-CSB	100-42-5	Styrene	mg/kg	1:3:49	2.50E-03	2.80E-03	No	ND		No	4.00E+00	No	No	<sgv< td=""></sgv<>
CBS-CSB	127-18-4	Tetrachloroethene	mg/kg	3:48:49	5.27E-03	7.00E-02	No	ND		No	6.00E-02	Yes	Yes	>SGW
CBS-CSB	7440-28-0	Thattium	mg/kg	3:49:49	6.29E-01	1.30E+00	No	ND	1	No	2.80E+00	No	No	<sgv< td=""></sgv<>
CBS-CSB	7440-31-5	Tin	mg/kg	9:49:49	1.44E+01	4.70E+02	No	ND		No	NA NA	No	No	NA
CBS-CSB	106-88-3		mg/kg	16:49:49	1.46E-02	2.90E-01	No	NO	-	No	1.20E+01	No	No	<\$GV
CBS-CSB	1336-36-3	Total PCBs	mg/kg	36:49:49	2.78E+00	8.61E+01	No	NO		No	ND	No	No	≪8GV
CBS-CSB	79-01-8	Trichloroethene	mg/kg	3:48:49	4.48E-03	3,40E-02	No	ND	-	No	6.00E-02	No	No	<8GV
CBS-CSB	7440-62-2	Vanadium	mg/kg	49:49:49	2.53E+01	4.70E+01	No	6.98E+01	No	Yes	9.80E+02	No	No	<sgv< td=""></sgv<>
CBS-CSB	1330-20-7	Xylenes (total)	mg/kg	13:49:49	7.84E-01	2.90E+01	No	ND		No	1.50E+02	No	No	<\$GV
CBS-CSB	7440-66-6		mg/kg	49:49:49	2.16E+03	1.05E+04	No	1.66E+02	Yes	No	6.20E+03	Yes	Yes	>SGW
CBS-CSC	1746-01-6	2,3,7,8-TCDD-TEQ	mg/kg	9:9:9	1.12E-05	3.66E-05	No	1.24E-05	Yes	No	NA	No	No	NA
CBS-CSC	78-93-3	2-Butanone (MEK)	mg/kg	3:3:9	7.60E-03	9.90E-03	No	4.99E-02	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSC	67-64-1	Acetone	mg/kg	5:9:9	3.42E-02	8.30E-02	No	1.58E-01	No	Yes	1.60E+01	No	No	<sgv< td=""></sgv<>
CBS-CSC	5103-71-9	alpha-Chlordane	mg/kg	1:1:9	9.20E-04	9.20E-04	No	ND		No	1.00E+01	No	No	<\$GV
CBS-CSC	7429-90-5		mg/kg	9:9:9	1.08E+04	1.30E+04	No	2.90E+04	No	Yes	NA	No	No	<8K
CBS-CSC	7440-36-0	Antimony	mg/kg	1:1:9	7.90E-01	7.90E-01	No	2.75E+00	No	Yes	5.00E+00	No	No	<sgv< td=""></sgv<>
CBS-CSC	7440-38-2	Arsenic	mg/kg	9:9:9	9.70E+00	1,40E+01	No	1.44E+01	No	Yes	2.90E+01	No	No	<\$GV
CBS-CSC	7440-39-3	Barium	mg/kg	9:9:9	2.49E+02	3.30E+02	No	4.13E+02	No	Yes	1,60E+03	No	No	<sgv< td=""></sgv<>
CBS-CSC	71-43-2	Benzene	mg/kg	1;1:9	3.00E-03	3.00E-03	No	ND		No	3.00E-02	No	No	<sgv< td=""></sgv<>
CBS-CSC	191-24-2	Benzo(g,h,i)perylene	mg/kg	1:1:9	6.50E-02	6.50E-02	No	ND		No	4,20E+03	No	No	<sgv< td=""></sgv<>
CBS-CSC	7440-41-7		mg/kg	9:9:9	8.28E-01	9.60E-01	No	1.56E+00	No	Yes	6.30E+01	No	No	<sgv< td=""></sgv<>
CBS-CSC	7440-43-9	Cadmlum	mg/kg	9:9:9	1.33E+01	2.40E+01	No	8.30E-01	Yes	No	7.50E+00	Yes	Yes	>SGW
CBS-CSC	7440-70-2		mg/kg	9:9:9	7.81E+03	1.40E+04	Yes	2.70E+04	No	Yes	NA	No	No	EN
CBS-CSC	108-90-7	Chlorobenzene	mg/kg	9:9:9	1.30E-01	7.00E-01	No	ND		No	1.00E+00	No	No	<sgv< td=""></sgv<>
CBS-CSC		Chromlum	mg/kg	9:9:9	3.81E+01	1.10E+02	No	4.00E+01	Yes	No	3.80E+01	Yes	Yes	>SGW
CBS-CSC	7440-48-4		mg/kg	9:9:9	9.41E+00	1.40E+01	No	1.72E+01	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSC	7440-50-8		mg/kg	9:9:9	1.09E+02	2.50E+02	No	3.80E+01	Yes	No	1,30E+05	No	No	<sgv< td=""></sgv<>
CBS-CSC	319-86-8	delta-BHC	mg/kg	3:6:9	6.65E-04	9.90E-04	No	ND ND		No	5.00E-04	Yes	Yes	>SGW
CBS-CSC	1918-00-9		mg/kg	1:1:9	6.60E-03	6.60E-03	No	ND		No	NA NA	No	No	NA NA
CBS-CSC		Dichiorprop	mg/kg	1:1:9	6.20E-03	8.20E-03	No	ND	 -	No	NA NA	No	No	NA NA
	1	12:2:0:bioh	ערישייי ו		3.202-03			,,,,	•	, ,,,,	R	,		
CBS-CSC	60-57-1	Dieldrin	mg/kg	8:9:9	4.76E-03	1,10E-02	No	ND		No	4.00E-03	Yes	Yes	>SGW

Table G-1 Tier 1 Class I Soil-to-Groundwater TACO Screen Sauget Area 1 - Creek Bottom Soils Human Health Risk Assessment

Area	CAS#	specific values for inorganics and	Units	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration	Max>BK?	Pass EN/BK?	Class I TACO Tier I Soli- to-groundwater (SGW) Concentration	le Mex>SGW?	COPC?	Reason
CBS-CSC		Endrin ketone	mg/kg	1:6:9	5.73E-03	1.00E-02	No	ND	<u> </u>	No	1.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSC		gamma-Chlordane	mg/kg	1:1:9	1.10E-03	1,10E-03	No	ND 1495-04		No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSC	7439-89-8	<u> </u>	mg/kg	9:9:9	1.76E+04	2.10E+04 1.40E+02	Yes	4.13E+04	No Yes	Yes No	NA NA	No No	No No	EN NA
CBS-CSC CBS-CSC	7439-92-1		mg/kg	9:9:9	4.32E+01	6.70E+03	No	4.38E+01 1.03E+04	No.	Yes	NA NA	No	No	EN
CBS-CSC	7439-95-4	Magnesium Manganese	mg/kg	9:9:9	4.43E+03 1.89E+02	3.90E+02	Yes No	1.42E+03	No	Yes	NA NA	No	No	<bk< td=""></bk<>
CBS-CSC	7439-96-5		mg/kg	9:9:9		3.90E+02 3.10E-01	No No	9.60E-02	Yes	No	2,10E+00	No	No No	<sgw< td=""></sgw<>
CBS-CSC		Methoxychlor	mg/kg	9:9:9	9.56E-02 4.15E-03	7.10E-03	No	9.60E-02 ND		No	1.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSC		Methylene chloride	mg/kg	4:9:9	3.47E-03	4.80E-03	No	ND		No	2.00E-02	No No	No	<sgw< td=""></sgw<>
CBS-CSC	7440-02-0	<u> </u>	mg/kg	9:9:9	2.63E+02	5.70E+02	No	4.28E+01	Yes	No	1.30E+02	Yes	Yes	>SGW
CBS-CSC	87-86-5	Pentachlorophenol	mg/kg mg/kg	7:9:9	6.06E-03	1.40E-02	No No	4.28E+01	7 68	No	3.00E-02	No Yes	No Yes	>SGW <sgw< td=""></sgw<>
CBS-CSC		Phenanthrene	mg/kg	1:1:9	2.50E-02	2.50E-02	No	ND ND		No	1.20E+04	No	No	<sgw< td=""></sgw<>
CBS-CSC		1	mg/kg	9:9:9	1.87E+03	2.30E+03	Yes	4,20E+03	No	Yes	NA NA	No No	No	EN
CBS-CSC	7440-23-5		mg/kg	9:9:9	1.24E+02	2.00E+02	Yes	ND ND		Yes	NA NA	No	No	EN
CBS-CSC	100-42-5	Styrene	mg/kg	1:1:9	2.70E-03	2.70E-03	No	ND		No	4.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSC	7440-31-5	Tin	mg/kg	1:9:9	3.93E+00	7.50E+00	No	ND	<u></u>	No	NA NA	No	No	NA NA
CBS-CSC	108-88-3	Toluene	mg/kg	4:9:9	4.13E-03	7.50E-03	No	ND		No	1,20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSC	1336-36-3		mg/kg	6:9:9	6.91E-02	1.78E-01	No	ND		No	ND	No	No	<sgw< td=""></sgw<>
CBS-CSC	7440-62-2		mg/kg	9:9:9	3.10E+01	3.70E+01	No	6.98E+01	No	Yes	9.80E+02	No	No	<sgw< td=""></sgw<>
CBS-CSC		Xylenes (total)	mg/kg	1:9:9	3.74E-03	4.30E-03	No	ND		No	1.50E+02	No	No	<sgw< td=""></sgw<>
CBS-CSC	7440-66-6		mg/kg	9:9:9	2.14E+03	3.40E+03	No	1.66E+02	Yes	No	6.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSD	106-46-7	1,4-Dichlorobenzene	mg/kg	2:6:6	1.12E-01	1.30E-01	No	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSD		2,3,7,8-TCDD-TEQ	mg/kg	6:6:6	1.65E-04	8.86E-04	No	1.24E-05	Yes	No	NA	No	No	NA.
CBS-CSD	93-76-5	2,4,5-T	mg/kg	1:1:6	5.40E-03	5,40E-03	No	ND		No	NA	No	No	NA
CBS-CSD	78-93-3	2-Butanone (MEK)	mg/kg	3:3:6	8.07E-03	1.00E-02	No	4.99E-02	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSD	72-54-8	4,4'-DDD	mg/kg	1:1:6	1.40E-03	1,40E-03	No	ND		No	1,60E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	50-29-3	4,4'-DDT	mg/kg	1:6:6	5.62E-02	2.40E-01	No	ND		No	3.20E+01	No	No	<\$GW
CBS-CSD	309-00-2		mg/kg	2:5:6	5.03E-03	9.00E-03	No	ND		No	5.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSD		alpha-Chlordane	mg/kg	1:5:6	6.78E-03	1.20E-02	No	ND		No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	7429-90-5	Aluminum	mg/kg	6:6:6	1.09E+04	1.40E+04	No	2.90E+04	No	Yes	NA NA	No	No	<bk< td=""></bk<>
CBS-CSD	7440-38-2	Arsenic	mg/kg	6:6:6	1.14E+01	1.80E+01	No	1.44E+01	Yes	No	2.90E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-39-3	Barlum	mg/kg	6:6:6	3.12E+02	5.70E+02	No	4.13E+02	Yes	No	1.50E+03	No	No	<sgw< td=""></sgw<>
CBS-CSD	50-32-8	Benzo(a)pyrene	mg/kg	3:6:6	8.48E-02	1.40E-01	No	ND		No	8.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSD		Benzo(b)fluoranthene	mg/kg	1:6:6	1.36E-01	2.00E-01	No	ND		No	5.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSD	191-24-2	Benzo(g,h,i)perylene	mg/kg	2:6:6	1.40E-01	2.20E-01	No	ND		No	4.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSD		Benzo(k)fluoranthene	mg/kg	1:6:6	1.38E-01	2.10E-01	No	ND		No	4.90E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-41-7		mg/kg	6:6:6	8.38E-01	9.90E-01	No	1.56E+00	No	Yes	2.20E+01	No	No	<8GW
CBS-CSD	7440-43-9		mg/kg	6:6:6	1.98E+01	4.00E+01	No	8.30E-01	Yes	No	5.20E+00	Yes	Yes	>SGW
CBS-CSD	7440-70-2		mg/kg	6:6:6	8.53E+03	2.50E+04	Yes	2.70E+04	No	Yes	NA	No	No	EN
CBS-CSD		Chlorobenzene	mg/kg	5:6:6	3.13E-02	1.50E-01	No	ND		No	1.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSD	1	Chromium	mg/kg	6:6:6	4.93E+01	5.70E+01	No	4.00E+01	Yes	No	4.00E+01	Yes	Yes	>SGW
CBS-CSD	7440-48-4	1 · · · · · · · · · · · · · · · · · · ·	mg/kg	6:6:6	9.47E+00	1.20E+01	No	1.72E+01	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSD	7440-50-8		mg/kg	6:6:6	3.86E+02	1.60E+03	No	3.80E+01	Yes	No	5.90E+04	No	No	<sgw< td=""></sgw<>

ENSR In Sonal Pages of 10

Class I screen - Using pH specific values for inorganics and ionizable organics.

Class I scree	n - Using PH	specific values for inorganics and	ionizabie	organics.			Υ			1	Class I			
							1				Cissei		1	1
Į į	j		ļ			Maximum	Į.		ļ		TACO Tier I Soll-	l	ļ	1
						Detected	Essential	Sediment			to-groundwater]	
			ļ.	Frequency of	Average	Concentration	Nutrient	Background (BK)	le le	Pass	(SGW)	19	ll .	
Area	CAS #	Constituent	Unite	Detection	(Avg)	(Mex)	(EN)?	Concentration	Mex>BK?	EN/BK?	Concentration	Max>SGW?	COPC?	Reason
CBS-CSD	75-99-0	Dalapon	mg/kg	1:6:6	4.75E-02	5.00E-02	No	ND	-	No	8.50E-01	No	No	<sgw< td=""></sgw<>
CBS-CSD	319-86-8	delta-BHC	mg/kg	4:5:6	8.24E-04	1.90E-03	No	ND		No	5.00E-04	Yes	Yes	>SGW
CBS-CSD	1918-00-9	Dicamba	mg/kg	1:1:6	1.80E-03	1.80E-03	No	ND		No	NA	No	No	NANA
CBS-CSD	120-36-5	Dichlorprop	mg/kg	1:1:6	2.10E-02	2.10E-02	No	ND	•	No	NA	No	No	NA NA
CBS-CSD	60-57-1	Dieldrin	mg/kg	5:6:6	1.27E-01	6.90E-01	No	ND		No	4.00E-03	Yes	Yes	>SGW_
CBS-CSD	1031-07-8	Endosulfan sulfate	mg/kg	1:2:6	7.10E-03	9.50E-03	No	ND		No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	206-44-0	Fluoranthene	mg/kg	4:6:6	1.31E-01	1.90E-01	No	ND		No	4.30E+03	No	No	<sgw< td=""></sgw<>
CBS-CSD	5103-74-2	gamma-Chlordane	mg/kg	2:6:6	1.55E-02	6.70E-02	No	ND		No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD		Indeno(1,2,3-cd)pyrene	mg/kg	2:6:6	1.30E-01	1.80E-01	No	ND		No	1.40E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	7439-89-6	Iron	mg/kg	6:6:6	1.72E+04	2.00E+04	Yes	4.13E+04	No	Yes	NA	No	No	EN
CBS-CSD	7439-92-1	Lead	mg/kg	6:6:6	9.82E+01	2.80E+02	No	4.38E+01	Yes	No	NA	No	No	NA
CBS-CSD	7439-95-4	Magnesium	mg/kg	6:6:6	3.77E+03	5.00E+03	Yes	1.03E+04	No	Yes	NA	No	No	EN
CBS-CSD		Manganese	mg/kg	6:6:6	1.37E+02	1.90E+02	No	1.42E+03	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSD	7439-97-6		mg/kg	6:6:6	2.38E-01	7.10E-01	No	9.60E-02	Yee	No	8.90E-01	No	No	<sgw< td=""></sgw<>
CBS-CSD		Methoxychlor	mg/kg	3:4:6	2.47E-02	6.20E-02	No	ND	-	No	1.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSD	75-09-2	Methylene chloride	mg/kg	4:4:6	2.68E-03	3,20E-03	No	ND	-	No	2.00E-02	No	No	<\$GW
CBS-CSD		Molybdanum	mg/kg	2:6:6	2.33E+00	7.00E+00	No	8.90E-01	Yes	No	NA	No	No	NA NA
CBS-CSD	7440-02-0		mg/kg	6:6:6	2.87E+02	5.30E+02	No	4.28E+01	Yes	No	1.00E+02	Yes	Yes	>8GW
CBS-CSD	87-86-5	Pentachlorophenol	mg/kg	5:6:6	6.90E-03	1.30E-02	No	NC		No	4.00E-02	No	No	<\$GW
CBS-CSD	85-01-8	Phenanthrene	mg/kg	2:4:6	1.01E-01	1.20E-01	No	ND		No	1.20E+04	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-09-7	Potassium	mg/kg	6:6:6	1.80E+03	2.10E+03	Yes	4.20E+03	No	Yes	NA	No	No	EN
CBS-CSD	129-00-0	Pyrene	mg/kg	3:6:6	1.32E-01	1.60E-01	No	ND	••	No	4.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSD	7782-49-2	Selenium	mg/kg	1:5:6	1.27E+00	2.80E+00	No	ND		No	6.30E+00	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-22-4	Silver	mg/kg	1;6;6	8.25E-01	1.50E+00	No	ND		No	4.40E+00	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-23-5	Sodium	mg/kg	6:6:6	1.75E+02	3.30E+02	Yes	ND		Yes	NA	No	No	EN
CBS-CSD	7440-31-5	Tin	mg/kg	2:6:6	5.23E+00	1.10E+01	No	ND		No	NA	No	No	NA NA
CBS-CSD	108-88-3	Toluene	mg/kg	1:1:6	2.90E-03	2.90E-03	No	ND		No	1.20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSD	1336-36-3	Total PCBs	mg/kg	5:6:6	4.92E-01	2.44E+00	No	ND		No	ND	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-62-2	Vanadium	mg/kg	6:6:6	3.15E+01	3.60E+01	No	6.98E+01	No	Yes	9.80E+02	No	No	<sgw< td=""></sgw<>
CBS-CSD	7440-66-6	Zinc	mg/kg	6:6:6	4.10E+03	8.20E+03	No	1.66E+02	Yes	No	5.10E+03	Yes	Yes	>SGW
CBS-CSE	106-46-7	1,4-Dichlorobenzene	mg/kg	1:17:17	1.30E-01	2.30E-01	No	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE		2,3,7,8-TCDD-TEQ	mg/kg	14:17:17	3.06E-05	1.05E-04	No	1.24E-05	Yes	No	NA	No	No	NA NA
CBS-CSE		2,4-D	mg/kg	2:17:17	8.34E-03	3.50E-02	No	2.03E-02	Yes	No	1.50E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE		2-Butanone (MEK)	mg/kg	5:5:17	1.06E-02	1,40E-02	No	4.99E-02	No	Yes	NA NA	No	No	<8K
CBS-CSE		4.4'-DDD	mg/kg	2:17:17	6.19E-03	4,70E-02	No	ND ND		No	1.60E+01	No	No	-SGW
CBS-CSE		4,4'-DDE	mg/kg	6:15:17	2.06E-03	7.20E-03	No	ND		No	5.40E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		4,4'-DDT	mg/kg	7:17:17	4.53E-03	1.70E-02	No	ND		No	3.20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE	67-64-1	Acetone	mg/kg	9:17:17	3.78E-02	7.30E-02	No	1.56E-01	No	Yes	1.60E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		alpha-BHC	mg/kg	1:15:17	4.21E-04	1.30E-03	No.	1.36E-01	- 140	No	5.00E-04	Yes	Yes	>SGW
CBS-CSE		alpha-Chlordane	mg/kg	1:17:17	2.31E-03	8.70E-03	No	ND ND		No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE	7429-90-5		mg/kg	17:17:17		1,40E+04	No No	2.90E+04	No	Yes	1.00E+01	No	No No	
CBS-CSE		Anthracene		1:1:17	5.00E-02	5.00E-02	No	2.90E+04 ND	INO	No.	1.20E+04	No No	No	<bk< td=""></bk<>
CBS-CSE	7440-36-0		mg/kg	3:17:17	1.43E+00	4.70E+00	No	2.75E+00	Yes	No	5.00E+04	No No	No No	<sgw< td=""></sgw<>
003-032	/ - 40-30-0		mg/kg	3:1/:1/	1.435+00	4./UE+UU	NO	2.75E+00	T 48	NO	0.005+00	NO	NO	<sgw< td=""></sgw<>

Table G-1
Tier 1 Class I Soil-to-Groundwater TACO Screen
Sauget Area 1 - Creek Bottom Solls
Human Health Risk Assessment

Class I scree	n - Using pH	specific values for inorganics an	d lonizable	organics.	, , , , , , , , , , , , , , , , , , , 					-				
Area	CAS#	Constituent	Units	Frequency of Detection	(Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration	is Max>BK?	Pass EN/BK?	Cless I TACO Tier I Soil- to-groundwater (SGW) Concentration	le Max>SGW?	COPC7	Reason
CBS-CSE	7440-38-2		mg/kg	16:17:17	8.08E+00	2.00E+01	No	1.44E+01	Yes	No	2.90E+01	No	No	sgw
CBS-CSE	7440-39-3		mg/kg	17:17:17	2.52E+02	6.40E+02	No	4.13E+02	Yes	No	1.60E+03	No	No	_ <sgw< td=""></sgw<>
CBS-CSE	56-55-3	Benzo(a)anthracene	mg/kg	3:17:17	1.26E-01	2.60E-01	No	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE	50-32-8	Benzo(a)pyrene	mg/kg	3:17:17	8.97E-02	4.20E-01	No	ND		No	8.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE_	205-99-2	Benzo(b)fluoranthene	mg/kg	4:17:17	1.41E-01	5.10E-01	No	ND		No	5.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE	<u></u>	Benzo(g,h,i)perylene	mg/kg	3:17:17	1.35E-01	3.50E-01	No	ND	<u> </u>	No	4.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSE	207-08-9	Benzo(k)fluoranthene	mg/kg	3:17:17	1.35E-01	3.70E-01	No	ND		No	4.90E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE	7440-41-7	+ 	mg/kg	17:17:17	7.44E-01	1.10E+00	No	1.56E+00	No	Yes	6.30E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Bis(2-ethylhexyl)phthalate	mg/kg	1:1:17	7.70E-02	7.70E-02	No No	ND		No	3.60E+03	No	No	<sgw< td=""></sgw<>
CBS-CSE	7440-43-9		mg/kg	17:17:17	1.42E+01	3.80E+01	No	8.30E-01	Yes	No	7.50E+00	Yes	Yes_	>SGW
CBS-CSE	7440-70-2		mg/kg	17:17:17		1.30E+04	Yes	2.70E+04	No	Yes	NA NA	No	No	EN
CBS-CSE		Chlorobenzene	mg/kg	12:17:17	2.33E-02	2.10E-01	No	ND		No	1.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE		Chromium	mg/kg	17:17:17	4.73E+01	1.70E+02	No	4.00E+01	Yes	No	3.80E+01	Yes	Yes	>SGW
CBS-CSE	218-01-9		mg/kg	4:17:17	1.32E-01	3.70E-01	No	ND		No	1.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSE	7440-48-4		mg/kg	17:17:17	8.08E+00	1.30E+01	No	1.72E+01	No	Yes	NA NA	No	No	<bk< td=""></bk<>
CBS-CSE	7440-50-8		mg/kg	17:17:17	4.25E+02	4.30E+03	No	3.80E+01	Yes	No	1.30E+05	No	No	<sgw< td=""></sgw<>
CBS-CSE		di-n-Butylphthalate	mg/kg	1:1:17	7.40E-02	7.40E-02	No	ND		No	2.30E+03	No	No	<sgw< td=""></sgw<>
CBS-CSE	53-70-3	Dibenzo(a,h)anthracene	mg/kg	1:17:17	6.93E-02	1.40E-01	No	ND	<u> </u>	No	2.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE	1918-00-9		mg/kg	1:1:17	2.50E-03	2.50E-03	No	ND	<u> </u>	No	NA	No	No	NA NA
CBS-CSE	60-57-1	Dieldrin	mg/kg	13:17:17	5.49E-03	3.40E-02	No	ND_	<u> </u>	No	4.00E-03	Yes	Yes	>SGW
CBS-CSE		Endosulfan I	mg/kg	3:3:17	1.43E-04	1.70E-04	No	ND		No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Endosullan II	mg/kg	1:1:17	6.60E-04	6.60E-04	No	ND_	<u> </u>	No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Endosulfan sulfate	mg/kg_	2:17:17	3.56E-03	1.60E-02	No	ND		No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Ethylbenzene	mg/kg	1:17:17	3.64E-03	4.90E-03	No	ND	<u> </u>	No	1.30E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Fluoranthene	mg/kg	4:17:17	1.63E-01	7.10E-01	No	ND	<u> </u>	No	4.30E+03	No	No	<sgw< td=""></sgw<>
CBS-CSE	+	gamma-Chlordane	mg/kg	2:18:17	1.66E-03	5.50E-03	No	ND		No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Heptachlor epoxide	mg/kg	5:5:17	4.34E-04	5.90E-04	No	ND	<u> </u>	No	7.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Indeno(1,2,3-cd)pyrene	mg/kg	2:17:17	1.38E-01	3.50E-01	No	ND		No	1.40E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE	7439-89-6		mg/kg	17:17:17	1.78E+04	2.70E+04	Yes	4.13E+04	No	Yes	NA NA	No	No	EN
CBS-CSE	7439-92-1		mg/kg	17:17:17	7.85E+01	4.00E+02	No	4.38E+01	Yes	No	NA NA	No	No	NA NA
CBS-CSE	7439-95-4	Magnesium	mg/kg	17:17:17	4.51E+03	6.90E+03	Yes	1.03E+04	No	Yes	NA	No	No	EN
CBS-CSE		Manganese	mg/kg	17:17:17	1.73E+02	3.00E+02	No	1.42E+03	No	Yes	NA	No	No	<bk< td=""></bk<>
CBS-CSE	7439-97-8		mg/kg	17:17:17	4.06E-01	1.60E+00	No	9.60E-02	Yes	No	2.10E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE	72-43-5	Methoxychlor	mg/kg	3:3:17	7.20E-04	8.90E-04	No	ND		No	1.60E+02	No	No	<sgw< td=""></sgw<>
CBS-CSE		Methylene chloride	mg/kg	3:6:17	2.78E-03	3.25E-03	No	ND	<u> </u>	No	2.00E-02	No	No	<sgw< td=""></sgw<>
CBS-CSE		Molybdenum	mg/kg	2:17:17	3.84E-01	1.50E+00	No	8.90E-01	Yes	No	NA NA	No	No	NA_
CBS-CSE	7440-02-0		mg/kg	17:17:17	1.81E+02	6.00E+02	No	4.28E+01	Yes	No	1.30E+02	Yes	Yes	>SGW
CBS-CSE	87-86-5	Pentachlorophenol	mg/kg	7:17:17	1.13E-02	3.30E-02	No	NC		No	3.00E-02	Yes	Yes	>SGW
CBS-CSE		Phenanthrene	mg/kg	4:17:17	1.26E-01	2.90E-01	No	ND	••	No	1.20E+04	No	No	<sgw< td=""></sgw<>
CBS-CSE		Potassium	mg/kg	17:17:17	2.07E+03	2.90E+03	Yes	4.20E+03	No	Yes	NA NA	No	No	EN
CBS-CSE	129-00-0	Pyrene	mg/kg	3:17:17	1.48E-01	4.80E-01	No	ND	••	No	4.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSE	7440-22-4		mg/kg	3:17:17	1.20E+00	9.80E+00	No	ND		No	8.50E+00	Yes	Yes	>SGW
CBS-CSE	7440-23-5	Sodium	mg/kg	17:17:17	2.41E+02	3.90E+02	Yes	ND		Yes	NA	No	No	EN

Table G-1
Tier 1 Class I Soll-to-Groundwater TACO Screen
Sauget Area 1 - Creek Bottom Solls
Human Health Risk Assessment

	CAS#	apacific values for inorganics an	Unite	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration		Pass EN/BK?	Class I TACO Tier I Soli- to-groundwater (SGW) Concentration	la Max>SGW?	COPC?	Resson
CBS-CSE	7440-28-0		mg/kg	1:16:17	6.61E-01	8.80E-01	No	ND	<u>-</u>	No	2.80E+00	No	No	<sgw< td=""></sgw<>
CBS-CSE	7440-31-5		mg/kg	3:17:17	5.60E+00	3.10E+01	No	ND	_ 	No	NA NA	No	No	NA NA
CBS-CSE		Toluene	mg/kg	3:17:17	3.70E-03	4.45E-03	No	ND		No	1.20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSE		Total PCBs	mg/kg	10:17:17	1.87E-01	1.25E+00	No	ND	- :-	No	ND ND	No	No_	<sgw< td=""></sgw<>
CBS-CSE	7440-62-2		mg/kg	17:17:17	2.95E+01	3.90E+01	No	6.98E+01	No	Yes No	9.80E+02	No No	No No	<sgw <sgw< td=""></sgw<></sgw
CBS-CSE	7440-66-6		mg/kg	17:17:17	1.92E+03	5.90E+03	No	1.66E+02	Yes	No No	6.20E+03	Yes	Yes	>SGW
CBS-CSF	79-34-5	1,1,2,2-Tetrachloroethane	mg/kg	1:16:16	3.91E-03	1.00E-02	No No	ND ND	 -	No	3.00E-03 2.00E-02	No No	No No	<sgw< td=""></sgw<>
CBS-CSF CBS-CSF	79-00-5 107-06-2	1,1,2-Trichloroethane	mg/kg	1:16:16	3.67E-03	6.10E-03 2.10E-03	No	ND ND		No	2,00E-02	No	No	<sgw< td=""></sgw<>
CBS-CSF CBS-CSF	106-46-7	1,2-Dichloroethane	mg/kg	1:1:16	2.10E-03	9.40E-02	No	ND		No	2.00E+00	No	No No	<sgw< td=""></sgw<>
CBS-CSF		1,4-Dichlorobenzene 2,3,7,8-TCDD-TEQ	mg/kg mg/kg	1:1:16	9.40E-02 8.91E-05	7.69E-04	No No	1,24E-05	Yes	No	2.00E+00	No	No No	NA ROGW
CBS-CSF		2,4-D	mg/kg	3:16:16	7.00E-03	2.63E-02	No	2.03E-02	Yes	No	1,50E+00	No	No No	<sgw< td=""></sgw<>
CBS-CSF		2-Butanone (MEK)	mg/kg	7:8:16	1.03E-02	1.40E-02	No No	4.99E-02	No	Yes	NA NA	No	No	<8K
CBS-CSF		4.4'-DDE	mg/kg	4:4:15	1.01E-03	1.60E-03	No	ND ND		No	5,40E+01	No	No	≺SGW
CBS-CSF		4,4'-DDT	mg/kg	3:15:15	3.42E-03	7.50E-03	No	ND		No	3,20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF		Acetone	mg/kg	7:16:16	4.22E-02	6.40E-02	No	1.56E-01	No	Yes	1,80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	309-00-2		mg/kg	1:1:16	2.30E-04	2.30E-04	No	NO		No	5.00E-01	No	No -	<sgw< td=""></sgw<>
CBS-CSF		alpha-Chlordane	mg/kg	2:15:16	1.97E-03	4.10E-03	No	ND		No	1.00E+01	No	No	≪3GW
CBS-CSF	7429-90-5	<u> </u>	mg/kg		8.86E+03	1.20E+04	No	2.90E+04	No.	Yes	NA NA	No	No	<bk< td=""></bk<>
CBS-CSF	7440-36-0		mg/kg	2:3:16	6.27E-01	6.60E-01	No	2.75E+00	No	Yes	5.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-38-2		mg/kg	15:16:16	9.71E+00	1.90E+01	No	1.44E+01	Yes	No	2.90E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF		Barium	mg/kg	16:16:16	2.19E+02	3.30E+02	No	4.13E+02	No	Yes	1.70E+03	No	No	<sgw< td=""></sgw<>
CBS-CSF		Benzo(a)anthracene	mg/kg	4:4:16	6.23E-02	9.20E-02	No	ND		No	2.00E+00	No	No	₹\$GW
CBS-CSF	50-32-8	Benzo(a)pyrene	mg/kg	5:16:16	6.95E-02	1.90E-01	No	ND		No	8.00E+00	No	No.	<sgw< td=""></sgw<>
CBS-CSF		Benzo(b)fluoranthene	mg/kg	5:16:16	1.14E-01	1.80E-01	No	ND		No	5.00E+00	No No	No	<sgw< td=""></sgw<>
CBS-CSF		Benzo(g,h,i)perylene	mg/kg	5:15:16	1.07E-01	1.30E-01	No	ND		No	4,20E+03	No	No No	<sgw< td=""></sgw<>
CBS-CSF		Benzo(k)fluoranthene	mg/kg	4:15:16	1,10E-01	1.30E-01	No	ND		No	4.90E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-41-7		mg/kg	13:16:16	6.10E-01	8.90E-01	No	1.56E+00	No	Yes	1,40E+02	No	No.	<sgw< td=""></sgw<>
CBS-CSF	319-85-7	—_ 	mg/kg	1:16:16	8.21E-04	3.90E-03	No	ND		No	5.00E-04	Yes	Yes	>SGW
CBS-CSF		Bis(2-ethylhexyl)phthalate	mg/kg	4:6:16	9.06E-02	1.10E-01	No	ND		No	3.60E+03	No	No	<sgw< td=""></sgw<>
CBS-CSF		Bromodichloromethane	mg/kg	1:1:16	1.30E-03	1.30E-03	No	ND		No	6.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSF	75-25-2	Bromoform	mg/kg	1:2:16	2.95E-03	3.00E-03	No	ND		No	8.00E-01	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-43-9		mg/kg	15:16:18	2.03E+01	5.70E+01	No	8.30E-01	Yes	No	1.10E+01	Yes	Yes	>SGW
CBS-CSF	7440-70-2		ma/ko	16:16:16	9.80E+03	1.70E+04	Yes	2.70E+04	No	Yes	NA NA	No	No	EN
CBS-CSF		Chlorobenzene	mg/kg	3:16:16	4.41E-03	1.40E-02	No	ND ND	-:-	No	1.00E+00	No	No	<sgw< td=""></sgw<>
CBS-CSF		Chromlum	mg/kg	16:16:16	1.68E+01	2.90E+01	No	4.00E+01	No	Yes	3.60E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	218-01-9		mg/kg	5:16:16	1.08E-01	1.40E-01	No	ND		No	1.60E+02	No	No	<sgw< td=""></sgw<>
			mg/kg	16:16:16	8.84E+00	1.30E+01	No	1.72E+01	No	Yes	NA NA	No	No	<8K
	/44U-4H-4													7011
CBS-CSF	7440-48-4			16:16:16	1.20F+02	5.05F+02	No	3.80E+01	Yes	No	2.00F+05	No	No	-SGW
CBS-CSF CBS-CSF	7440-50-8	Copper	mg/kg	16:16:16	1.20E+02 6.56E-01	5.05E+02 4.57E+00	No No	3.80E+01 ND	Yes	No No	2.00E+05 4.00E+01	No No	No No	<sgw <sgw< td=""></sgw<></sgw
CBS-CSF CBS-CSF CBS-CSF	7440-50-8 57-12-5	Copper Cyanide	mg/kg mg/kg	2:16:16	6.56E-01	4.57E+00	No	ND			4.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-50-8 57-12-5	Copper Cyanide Dibromochioromethane	mg/kg							No				

Table G-1
Tier 1 Class I Soll-to-Groundwater TACO Screen
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Area	CAS #	Constituent	Units	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration	le Mex>BK?		Class I TACO Tier I Solito-groundwater (SGW) Concentration	le Max>SGW?	COPC7	Reason
CBS-CSF		Endosulfan sulfate	mg/kg	1:10:16	2.73E-03	4.30E-03	No	ND		No	1.80E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	206-44-0	Fluoranthene	mg/kg	5:16:16	1.12E-01	1.70E-01	No	ND		No	4.30E+03	No	No	<sgw< td=""></sgw<>
CBS-CSF_	5103-74-2	ļ v 	mg/kg	6:16:16	1.52E-03	3.80E-03	No No	ND		No	1.00E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	87-68-3	Hexachiorobutadiene	mg/kg	1:1:16	6.10E-02	6.10E-02	No	ND		No	2.00E+00	No	No_	<\$GW
CBS-CSF	193-39-5	Indeno(1,2,3-cd)pyrene	mg/kg	2:5:16	1.06E-01	1.10E-01	No	ND	<u> </u>	No	1.40E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	7439-89-6	 	mg/kg	16:16:16	1.93E+04	4.10E+04	Yes	4.13E+04	No	Yes	NA .	No	No_	EN
CBS-CSF	7439-92-1	Lead	mg/kg	16:16:16		4.50E+02	No	4.38E+01	Yes	No	NA	No	No	NA_
CBS-CSF		Magnesium	mg/kg	16:16:16		8.20E+03	Yes	1.03E+04	No	Yes	NA NA	No	No	EN
CBS-CSF	7439-96-5		mg/kg	16:16:16		8.90E+02	No	1.42E+03	No	Yes	NA .	No	No	<bk< td=""></bk<>
CBS-CSF	7085-19-0	· · · · · · · · · · · · · · · · · · ·	mg/kg	1:16:16	1.46E+00	2.30E+00	No	ND	<u></u>	No	NA	No	No	NA NA
CBS-CSF	7439-97-6	<u> </u>	mg/kg	16:16:16	1.91E-01	8.20E-01	No	9.60E-02	Yes	No	3.30E+00	No	No	<sgw< td=""></sgw<>
CBS-CSF	75-09-2	Methylene chloride	mg/kg	4:15:16	3.26E-03	4.30E-03	No	ND		No	2.00E-02	No	No_	<sgw< td=""></sgw<>
CBS-CSF	7439-98-7	Molybdenum	mg/kg	2:16:16	5.90E-01	2.20E+00	No	8.90E-01	Yes	No	NA NA	No	No	NA NA
CBS-CSF	7440-02-0	Nickel	mg/kg	16:16:16	1.67E+02	6.30E+02	No	4.28E+01	Yes	No_	1.80E+02	Yes	Yes	>SGW
CBS-CSF	87-86-5	Pentachlorophenol	mg/kg	8:16:16	9.11E-03	2.40E-02	No	NC	-	No	2.00E-02	Yes	Yes	>\$GW
CBS-CSF	85-01-8	Phenanthrene	mg/kg	4:4:16	5.93E-02	9.80E-02	No	ND	••	No	1.20E+04	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-09-7		mg/kg	16:16:16	1.59E+03	2.30E+03	Yes	4.20E+03	No	Yes	NA NA	No	No	EN
CBS-CSF	129-00-0	Pyrene	mg/kg	2:16:16	1.21E-01	1.60E-01	No	ND		No	4.20E+03	No	No	<sgw< td=""></sgw<>
CBS-CSF	7782-49-2		mg/kg	1:15:16	6.89E-01	1.80E+00	No	ND	••	No	4.50E+00	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-22-4	Silver	mg/kg	1:16:18	6.65E-01	7.90E-01	No	ND	**	No	1.30E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-23-5		mg/kg	15:16:16	1.38E+02	2.90E+02	Yes	ND		Yes	NA_	No	No	EN
CBS-CSF	7440-31-5	Tin	mg/kg	1:16:16	3.77E+00	1.70E+01	No	ND	••	No	NA	No	No	NA
CBS-CSF	108-88-3	Toluene	mg/kg	8:16:16	4.31E-03	7.70E-03	No	ND	••	No	1.20E+01	No	No	<sgw< td=""></sgw<>
CBS-CSF	1336-36-3	Total PCBs	mg/kg	7:16:16	6.75E-02	3.57E-01	No	ND		No	ND	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-62-2	Vanadium	mg/kg	16:16:16	2.57E+01	3.40E+01	No	6.98E+01	No	Yes	9.80E+02	No	No	<sgw< td=""></sgw<>
CBS-CSF	1330-20-7	Xylenes (total)	mg/kg	1:15:16	3.39E-03	4.05E-03	No	ND	-	No	1.50E+02	No	No	<sgw< td=""></sgw<>
CBS-CSF	7440-66-6	Zinc	mg/kg	16:16:16	2.24E+03	1.50E+04	No	1.66E+02	Yes	No	7.50E+03	Yes	Yes	>SGW
SITE M	120-82-1	1,2,4-Trichlorobenzene	mg/kg	2:5:9	1.04E-01	1.60E-01	No	ND		No	5.00E+00	No	No	<sgw< td=""></sgw<>
SITE M	95-50-1	1,2-Dichlorobenzene	mg/kg	1:5:9	1.29E-01	2.10E-01	No	ND		No	1.70E+01	No	No	<sgw< td=""></sgw<>
SITE M	106-46-7	1,4-Dichlorobenzene	mg/kg	3:9:9	9.78E-01	4.10E+00	No	ND	••	No	2.00E+00	Yes	Yes	>SGW
SITE M	1746-01-6	2,3,7,8-TCDD-TEQ	mg/kg	9:9:9	9.59E-04	5.23E-03	No	1.24E-05	Yes	No	NA	No	No	NA NA
SITE M	93-76-5	2,4,5-T	mg/kg	1:1:9	1.80E-03	1.80E-03	No	ND		No	NA	No	No	NA.
SITE M	94-82-6	2,4-DB	mg/kg	2:9:9	1.72E-02	5.20E-02	No	ND		No	NA	No	No	NA
SITE M	78-93-3	2-Butanone (MEK)	mg/kg	9:9:9	5.01E-02	1.00E-01	No	4,99E-02	Yes	No	NA	No	No	NA NA
SITE M	72-55-9	4,4'-DDE	mg/kg	1:7:9	1.67E-02	3.50E-02	No	ND		No	5.40E+01	No	No	<sgw< td=""></sgw<>
SITE M	50-29-3	4,4'-DDT	mg/kg	5:9:9	2.17E-01	1.30E+00	No	ND	••	No	3.20E+01	No	No	<sgw< td=""></sgw<>
SITE M	106-47-8	4-Chloroaniline	mg/kg	1:1:9	1.00E-01	1.00E-01	No	ND		No	7.00E-01	No	No	<sgw< td=""></sgw<>
SITE M	83-32-9	Acenaphthene	mg/kg	2:2:9	6.25E-02	8.60E-02	No	ND		No	5.70E+02	No	No	<sgw< td=""></sgw<>
SITE M	67-64-1	Acetone	mg/kg	8:9:9	2.07E-01	5.65E-01	No	1.56E-01	Yes	No	1.60E+01	No	No	<sgw< td=""></sgw<>
SITE M	319-84-6	alpha-BHC	mg/kg	1:5:9	1.48E-03	2.30E-03	No	ND		No	5.00E-04	Yes	Yes	>SGW
SITE M		Aluminum	mg/kg	9:9:9	3.87E+03	7.50E+03	No	2.90E+04	No	Yes	NA NA	No	No	<bk< td=""></bk<>
SITE M		Anthracene	mg/kg	2:6:9	1.24E-01	2.30E-01	No	ND		No	1.20E+04	No	No	<sgw< td=""></sgw<>
SITE M	7440-36-0		mg/kg	5:9:9	2.91E+00	6.80E+00	No	2.75E+00	Yes	No	5.00E+00	Yes	Yes	>SGW
	1 7 7 70 70 70	promoteory	עריעייי	0.0.0	T00	J.5522 700				لستنب				

Table G-1
Tier 1 Class I Soil-to-Groundwater TACO Screen
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Class I scre	en - Using pH	specific values for inorganics and	ionizable	organics.										
Area	CAS#	Constituent	Units	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration	ls Max>BK?	Pass EN/BK?	Class I TACO Tier I Soll- to-groundwater (SGW) Concentration	is Max>SGW?	COPC?	Reason
SITE M	7440-38-2		mg/kg	9:9:9	7.28E+00	2.50E+01	No	1,44E+01	Yes	No	3.00E+01	No	No	<sgw< td=""></sgw<>
SITE M	7440-39-3		mg/kg	9:9:9	4.51E+02	1.80E+03	No	4.13E+02	Yes	No	1.80E+03	No	No	<sgw< td=""></sgw<>
SITE M		Benzene	mg/kg	4:9:9	B.35E-03	3.70E-02	No	ND		No	3.00E-02	Yes	Yes	>SGW
SITE M		Benzo(a)anthracene	mg/kg	8:9:9	2.54E-01	7.20E-01	No	ND_	<u> </u>	No	2.00E+00	No	No	<sgw< td=""></sgw<>
SITE M		Benzo(a)pyrene	mg/kg	5:8:9	2.14E-01	4.80E-01	No No	ND		No	8.00E+00	No	No	
SITE M		Benzo(b)fluoranthene	mg/kg	5:7:9	2.37E-01	6.10E-01	No	ND		No	5.00E+00	No	No	<sgw< td=""></sgw<>
SITE M_	191-24-2	Benzo(g,h,i)perylene	mg/kg	5:6:9	1.69E-01	4,10E-01	No No	ND	:	No	4.20E+03	No	No	<sgw< td=""></sgw<>
SITE M		Benzo(k)fluoranthene	mg/kg	4:6:9	1.29E-01	3.40E-01	No	ND	:-	No	4.90E+01	No	No	<sgw< td=""></sgw<>
SITE M		Beryllium	mg/kg	9:9:9	2.94E-01	5.50E-01	No	1.56E+00	No	Yes	1.00E+03	No	No	<sgw< td=""></sgw<>
SITE M	117-81-7	Bis(2-ethylhexyl)phthalate	mg/kg	4:9:9	4.78E-01	1.13E+00	No	ND		No	3.60E+03	No	No No	<sgw< td=""></sgw<>
SITE M	7440-43-9		mg/kg	9:9:9	4.92E+00	1.70E+01	No	8.30E-01	Yes	No	5.90E+01	No	No	<sgw< td=""></sgw<>
SITE M	7440-70-2		mg/kg	9:9:9	7.54E+03	1.60E+04	Yes	2.70E+04	No	Yes	NA	No	No	EN
SITE M	86-74-8	Carbazole	mg/kg	1:1:9	3.20E-02	3.20E-02	No	ND	<u> </u>	No	6.00E-01	No	No	<sgw< td=""></sgw<>
SITE M		Carbon disulfide	mg/kg	8:9:9	2.34E-02	7.95E-02	No	ND		No	3.20E+01	No	No	WDS>
SITE M		Chlorobenzene	mg/kg	8:9:9	3.38E-01	1.20E+00	No	ND		No	1.00E+00	Yes	Yes	>8GW
SITE M		Chromium	mg/kg	9:9:9	1.85E+01	5.50E+01	No	4.00E+01	Yes	No	3.20E+01	Yes	Yes	>8GW
SITE M	218-01-9		mg/kg	8:9:9	2.99E-01	8.15E-01	No	ND		No	1.60E+02	No	No	<8GW
SITE M		Cobalt	mg/kg	9:9:9	8.24E+00	2,35E+01	No	1.72E+01	Y96	No	NA	No	No	NA
SITE M		Copper	mg/kg	9:9:9	1.44E+03	4.90E+03	No	3.80E+01	Yes	No	3.30E+05	No	No	<sgw< td=""></sgw<>
SITE M	57-12-5	Cyanide	mg/kg	2:9:9	6.96E-01	9.90E-01	No	ND	:	No	4.00E+01	No	No	<sgw< td=""></sgw<>
SITE M	53-70-3	Dibenzo(a,h)anthracene	mg/kg	2:5:9	8.06E-02	1.50E-01	No	ND		No	2.00E+00	No	No	<sgw< td=""></sgw<>
SITE M		Dibenzoluran	mg/kg	1:1:9	7.70E-02	7.70E-02	No	ND	••	No	NA NA	No	No	NA NA
SITE M		Dicamba	mg/kg	2:2:9	2.95E-03	3.30E-03	No	ND		No	NA NA	No	No	NA
SITE M		Dichlorprop	mg/kg	1;1:9	2.40E-02	2.40E-02	No	ND	•	No	NA NA	No	No	NA
SITE M		Endrin aldehyde	mg/kg	6:9:9	1.16E-01	8.30E-01	No No	ND_		No	1.00E+00	No	No	<sgw< td=""></sgw<>
SITE M		Ethylbenzene	mg/kg	4:9:9	4.93E-03	1.10E-02	No	ND		No	1.30E+01	No	No	<sgw< td=""></sgw<>
SITE M		Fluoranthene	mg/kg	8:9:9	5.08E-01	1,70E+00	No	ND		No	4.30E+03	No	No	<sgw< td=""></sgw<>
SITE M		Fluorene	mg/kg	3:6:9	1.73E-01	4.90E-01	No	ND		No	5.60E+02	No	No	<sgw< td=""></sgw<>
SITE M		gamma-BHC (Lindane)	mg/kg	4:4:9	2.85E-03	4.40E-03	No	ND		No	9.00E-03	No	No	<sgw< td=""></sgw<>
SITE M	+	Heptachlor	mg/kg	2:9:9	2.66E-02	1.60E-01	No	ND	•	No	2.30E+01	No	No	<sgw< td=""></sgw<>
SITE M		Heptachlor epoxide	mg/kg	3:9:9	1.08E-01	8.60E-01	No	ND		No	7.00E-01	Yes	Yes	>SGW
SITE M		Indeno(1,2,3-cd)pyrene	mg/kg	2:5:9	1.17E-01	1.70E-01	No	ND	••	No	1.40E+01	No	No	<sgw< td=""></sgw<>
SITE M	7439-89-6	<u> </u>	mg/kg	9:9:9	1.05E+04	1.80E+04	Yes	4.13E+04	No	Yes	NA	No	No	EN
SITE M	7439-92-1		mg/kg	9:9:9	9.23E+01	2.70E+02	No	4.38E+01	Yes	No	NA	No	No	NA
SITE M		Magnesium	mg/kg	9:9:9	3.28E+03	6.50E+03	Yes	1.03E+04	No	Yes	NA	No	No	EN
SITE M		Manganese	mg/kg	9:9:9	1,22E+02	3.60E+02	No	1.42E+03	No	Yes	NA	No	No	<bk< td=""></bk<>
SITE M	7085-19-0	<u> </u>	mg/kg	1:9:9	2.04E+00	7.80E+00	No	ND		No	NA	No	No	NA
SITE M	7439-97-6		mg/kg	9:9:9	1.26E-01	3.00E-01	No	9,60E-02	Yes	No	6.40E+00	No	No	<sgw< td=""></sgw<>
SITE M		Molybdenum	mg/kg	3:9:9	6.96E-01	3,15E+00	No	8.90E-01	Yes	No	NA	No	No	NA
SITE M		N-Nitrosodiphenylamine	mg/kg	1:6:9	1.91E-01	6.00E-01	No	ND		No	1.00E+00	No	No	<sgw< td=""></sgw<>
SITE M	91-20-3	Naphthalene	mg/kg	2:5:9	1.07E-01	1.60E-01	No	ND		No	8.40E+01	No	No	<sgw< td=""></sgw<>
SITE M	7440-02-0	Nickel	mg/kg	9:9:9	4.80E+02	1.50E+03	No	4.28E+01	Yes	No	7.00E+02	Yes	Yes	>SGW
SITE M	87-88-5	Pentachlorophenol	mg/kg	9:9:9	6.37E-02	2.90E-01	No	NC		No	2.00E-02	Yes	Yes	>SGW

November 1, 2002

Table G-1 Tier 1 Class I Soll-to-Groundwater TACO Screen Sauget Area 1 - Creek Bottom Soils Human Health Risk Assessment

Class I screen - Using pH specific values for inorganics and ionizable organics.

Area	CAS#	Constituent	Unite	Frequency of Detection	Average (Avg)	Maximum Detected Concentration (Max)	Essential Nutrient (EN)?	Sediment Background (BK) Concentration	le Mex>BK?	Pass EN/BK?	Class I TACO Tier I Soil- to-groundwater (SGW) Concentration	la Max>8GW?	COPC7	Resson
SITE M	85-01-8	Phenanthrene	mg/kg	7:9:9	4.16E-01	1.40E+00	No	ND		No	1.20E+04	No	No	<sgw< td=""></sgw<>
SITE M	7440-09-7	Potassium	mg/kg	9:9:9	8.13E+02	1.50E+03	Yes	4.20E+03	No	Yes	NA NA	No	No	EN
SITE M	129-00-0	Pyrene	mg/kg	3:9:9	6.36E-01	1.70E+00	No	ND	-	No	4.20E+03	No	No	<sgw< td=""></sgw<>
SITE M	7440-22-4	Silver	mg/kg	7:9:9	1.67E+00	5.60E+00	No	ND	••	No	3.90E+01	No	No	<sgw< td=""></sgw<>
SITE M	7440-23-5	Sodium	mg/kg	8:9:9	1.22E+02	2.60E+02	Yes	ND	•	Yes	NA	No	No	EN
SITE M	7440-31-5	Tin	mg/kg	4:9:9	7.33E+00	2.00E+01	No	ND	-	No	NA	No	No	NA
SITE M	108-88-3	Toluene	mg/kg	8:9:9	1.01E-02	4.20E-02	No	ND		No	1.20E+01	No	No	<sgw< td=""></sgw<>
SITE M	1336-36-3	Total PCBs	mg/kg	9:9:9	5.40E+00	2.71E+01	No	ND	••	No	ND	No	No	<sgw< td=""></sgw<>
SITE M	7440-62-2	Vanadium	mg/kg	9:9:9	1.32E+01	2.30E+01	No	6.98E+01	No	Yes	9.80E+02	No	No	<sgw< td=""></sgw<>
SITE M	1330-20-7	Xylenes (total)	mg/kg	5:9:9	4.40E-02	1.60E-01	No	ND	**	No	1.50E+02	No	No	<sgw< td=""></sgw<>
SITE M	7440-66-6	Zinc	mg/kg	9:9:9	3.09E+03	1.20E+04	No	1.66E+02	Yes	No	1.60E+04	No	No	<sgw< td=""></sgw<>

J:\Solutia-614

Creek Segment	Constituents
С\$-В	1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,4-Dichlorobenzene, 2,4,6-Trichlorophenol, 2,4-Dichlorophenol, 4-Chloroaniline, alpha-BHC, Arsenic, Benzene, beta-BHC, Cadmium, Carbazole, Chlorobenzene, Chromium, delta-BHC, Dieldrin, N-Nitrosodiphenylamine, Nickel, Nitrobenzene, Pentachlorophenol, Silver, Tetrachloroethene, Zinc
cs-c	Cadmium, Chromium, delta-BHC, Dieldrin, Nickel
CS-D	Cadmium, Chromium, delta-BHC, Dieldrin, Nickel, Zinc
CS-E	alpha-BHC, Cadmium, Chromium, Dieldrin, Nickel, Pentachlorophenol, Sllver
CS-F	1,1,2,2-Tetrachloroethane, beta-BHC, Cadmium, Dieldrin, Nickel, Pentachlorophenol, Zinc
Site M	1,4-Dichlorobenzene, alpha-BHC, Antimony, Benzene, Chlorobenzene, Chromium, Heptachlor epoxide, Nickel, Pentachlorophenol

RO - Remediation Objective

SGW - Soil-to-Groundwater

TACO - Tiered Approach to Corrective Action Objectives

Table G-3
TACO Tier 2 SGW RO Comparison
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Tromativious risk risks			Maximum	Exposure		TACO Tier 1	:			TACO Tier 2		
			Detected	Point		Class I Soll-to-		ls	Is	Class I Soil-to-	ls	ls
			Concentration	Concentration		groundwater	Is Max>Tler	EPC>Tier 1	Avg>Tier 1	groundwater	Max>Tler	Avg>Tier 2
Constituent	Units	FOD	(Max)	(EPC)	Average (Avg)	(SGW) RO	1 SGW?	SGW?	SGW?	(SGW) RO	2 SGW?	SGW?
CS-B												
1,2,4-Trichlorobenzene	mg/kg	6:49:49	8.00E+01	4.90E-01	2.28E+00	5.00E+00	Yes	Yes	No	はままままます。	3.00	多字字語
1,2-Dichlorobenzene	mg/kg	6:49:49	5.30E+01	4.80E-01	1.67E+00	1.70E+01	Yes	Yes	No	州市市里市门72 万		
1,4-Dichlorobenzene	mg/kg	7:49:49	5.50E+00	2.70E-01	2.93E-01	2.00E+00	Yes	Yes	No	学研究的智慧的	地域沿江地	子の
2,4,6-Trichlorophenol	mg/kg	5:49:49	4.30E+00	1.15E-01	2.42E-04	1.50E-01	Yes	Yes	No			
2,4-Dichlorophenol	mg/kg	5:49:49	6.60E+00	2.07E-01	2.69E-01	1.00E+00	Yes	Yes	No	1年以中本に大学の		
4-Chloroaniline	mg/kg	5:49:49	1.10E+01	5.14E-01	5.94E-01	7.00E-01	Yes_	Yes	No	产以外外的	を表する。	は下くる子
alpha-BHC	mg/kg	9:44:49	2.90E-03	7.00E-04	5.85E-04	5.00E-04	Yes	Yes	Yes	1.92E-03	Yes	No
Arsenic	mg/kg	49:49:49	4.40E+01	1.14E+01	9.72E+00	2.90E+01	Yes	Yes	No _			
Benzene	mg/kg	19:49:49	1,80E-01	6.80E-03	8.31E-03	3.00E-02	Yes	Yes	No	THE RESERVE	***	開始印制的
beta-BHC	mg/kg	10:46:49	7.70E-03	1.50E-03	1.25E-03	5.00E-04	Yes	Yes	Yes	1.92E-03	Yes	No
Cadmium	mg/kg	46:49:49	5.40E+01	2.60E+01	8.25E+00	7.50E+00	Yes	Yes	Yes	3.74E+00	Yes	Yes
Carbazole	mg/kg	1:49:49	6.20E-01	1.33E-01	1.28E-01	6,00E-01	Yes	Yes	No	機構開闢機構製料	等时 一个	至 经制制
Chlorobenzene	mg/kg	38:49:49	9.70E+00	1.39E+00	4.50E-01	1.00E+00	Yes	Yes	No	建筑水水水水	建	*************************************
Chromium	mg/kg	49:49:49	1.80E+02	9.03E+01	5.13E+01	3.80E+01	Yes	Yes	Yes	9.16E+02	No	No
delta-BHC	mg/kg	2:44:49	4.10E-03	6.00E-03	5.27E-04	5.00E-04	Yes	Yes	Yes	1.59E-03	Yes	No
Dieldrin	mg/kg	8:47:49	4.90E-02	8.90E-03	7.72E-03	4.00E-03	Yes	Yes	Yes	7.01E-03	Yes	Yes
N-Nitrosodiphenylamine	mg/kg	4:49:49	1.20E+00	1.41E-01	1.37E-01	1.00E+00	Yes	Yes	No	建工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	W K + 12	被押的
Nickel	mg/kg	49:49:49	6.30E+02	2.28E+02	1.92E+02	1.30E+02	Yes	Yes	Yes	4.47E+02	Yes	No
Nitrobenzene	mg/kg	2:49:49	5.20E-01	1.32E-01	1.27E-01	1.00E-01	Yes	Yes	Yes	7.48E-03	Yes	Yes
Pentachlorophenol	mg/kg	37:49:49	4.40E+01	2.65E-01	9.87E-01	3.00E-02	Yes	Yes	Yes	1.68E-02	Yes	Yes
Silver	mg/kg	10:49:49	9.00E+00	8.06E-01	7.78E-01	8.50E+00	Yes	Yes	No	ALCO DE LA CONTRACTION DEL CONTRACTION DE LA CON	非影響 图题	学子把数据
Tetrachloroethene	mg/kg	3:48:49	7.00E-02	5.10E-03	5.27E-03	6.00E-02	Yes	No	No	Har Burger of Burger		
Zinc	mg/kg	49:49:49	1.05E+04	6.16E+03	2.16E+03	6.20E+03	Yes	No	No			CHAPTER .
CS-C												
Cadmium	mg/kg	9:9:9	2.40E+01	1.74E+01	1.33E+01	7.50E+00	Yes	Yes	Yes	4.01E+00	Yes	Yes
Chromium	mg/kg	9:9:9	1.10E+02	5.83E+01	3.61E+01	3.80E+01	Yes	Yes	No	THE RESERVE	新美久等	学科的
delta-BHC	mg/kg	3:6:9	9.90E-04	1.00E-03	6.65E-04	5.00E-04	Yes	Yes	Yes	2.18E-03	No	No
Dieldrin	mg/kg	8:9:9	1.10E-02	1.10E-02	4.76E-03	4.00E-03	Yes	Yes	Yes	1.63E-02	No	No
Nickel	mg/kg	9:9:9	5.70E+02	3.57E+02	2.63E+02	1.30E+02	Yes	Yes	Yes	4.80E+02	Yes	No

Table G-3
TACO Tier 2 SGW RO Comparison
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

			Maximum	Exposure		TACO Tier 1				TACO Tier 2		
ł			Detected	Point		Class I Soll-to-		ls	is	Class I Soll-to-	is	ls
			Concentration	Concentration		groundwater	Is Max>Tier	EPC>Tier 1	Avg>Tier 1	groundwater	Max>Tler	Avg>Tier 2
Constituent	Units	FOD	(Max)	(EPC)	Average (Avg)	(SGW) RO	1 SGW?	SGW?	SGW?	(SGW) RO	2 SGW?	SGW?
CS-D												
Cadmium	mg/kg	6:6:6	4.00E+01	4.00E+01	1.98E+01	5.20E+00	Yes	Yes	Yes	3.87E+00	Yes	Yes
Chromium	mg/kg	6:6:6	5.70E+01	5.70E+01	4,93E+01	4.00E+01	Yes	Yes	Yes	9.47E+02	No	No
delta-BHC	mg/kg	4:5:6	1.90E-03	1.90E-03	8.24E-04	5.00E-04	Yes	Yes	Yes	2.04E-03	No	No
Dieldrin	mg/kg	5:6:6	6.90E-01	6.90E-01	1.27E-01	4,00E-03	Yes	Yes	Yes	1.53E-02	Yes_	Yes
Nickel	mg/kg	6:6:6	5.30E+02	5.30E+02	2.87E+02	1.00E+02	Yes	Yes	Yes	4.62E+02	Yes	No
Zinc	mg/kg	6:6:6	8.20E+03	8.20E+03	4.10E+03	5.10E+03	Yes	Yes	No	The state of the state of	经运用部外	的解胎的解
CS-E												
alpha-BHC	mg/kg	1:15:17	1.30E-03	5.00E-03	4.21E-04	5.00E-04	Yes	Yes	No	中華時川時代開業	事を作る	本語が、はままま
Cadmium	mg/kg	17:17:17	3.80E+01	2.31E+01	1.42E+01	7.50E+00	Yes	Yes	Yes	4.18E+00	Yes	Yes
Chromium	mg/kg	17:17:17	1.70E+02	7.27E+01	4,73E+01	3.80E+01	Yes	Yes	Yes	1.02E+03	No	No
Dieldrin	mg/kg	13:17:17	3.40E-02	2.26E-02	5.49E-03	4.00E-03	Yes	Yes	Yes	1.53E-02	Yes	No
Nickel	mg/kg	17:17:17	6.00E+02	2.67E+02	1.81E+02	1.30E+02	Yes	Yes	Yes	5.00E+02	Yes	No
Pentachlorophenol	mg/kg	7:17:17	3.30E-02	2.07E-02	1.13E-02	3.00E-02	Yes	Yes	No		開催を開発	有能够的
Silver	mg/kg	3:17:17	9.80E+00	1.38E+00	1,20E+00	8.50E+00	Yes	Yes	No		E 5232	<i>37.</i> 11. 11.
CS-F												
1,1,2,2-Tetrachloroethane	mg/kg	1:16:16	1.00E-02	4.40E-03	3.91E-03	3.00E-03	Yes	Yes	Yes	9.59E-04	Yes	Yes
beta-BHC	mg/kg	1:18:16	3.90E-03	1.10E-03	8.21E-04	5.00E-04	Yes	Yes	Yes	2.22E-03	Yes	No
Cadmium	mg/kg	15:16:16	5.70E+01	2.80E+01	2.03E+01	1.10E+01	Yes	Yes	Yes	7.31E+00	Yes	Yes
Dieldrin	mg/kg	9:16:16	8.20E-03	3.70E-03	2.30E-03	4.00E-03	Yes	Yes	No	basis a market basis of	T. Jackson	Lang Control
Nickel	mg/kg	16:16:16	6.30E+02	3,29E+02	1.67E+02	1.80E+02	Yes	Yes	No	THE STATE OF THE STATE OF	斯林教科教	語機構が
Pentachlorophenol	mg/kg	8:16:16	2.40E-02	1.17E-02	9.11E-03	2.00E-02	Yes	Yes	No	不可能的 (如)	海林法院	泽加州城
Zinc	mg/kg	16:16:16	1.50E+04	5.37E+03	2.24E+03	7.50E+03	Yes	Yes	No	沒機器構造物的對	以西班 斯斯	(沙) ()
Site M												
1,4-Dichlorobenzene	mg/kg	3:9:9	4.10E+00	4.10E+00	9.78E-01	2.00E+00	Yes	Yes	No	不证实证实现。	州村中京广节内	THE RESERVE
alpha-BHC	mg/kg	1:5:9	2.30E-03	2.30E-03	1.48E-03	5.00E-04	Yes	Yes	Yes	1.53E-03	Yes	No
Antimony	mg/kg	5:9:9	6.80E+00	5.27E+00	2.91E+00	5.00E+00	Yes	Yes	No	THE REAL PROPERTY.	Bright Life Co.	的是可以是
Benzene	mg/kg	4:9:9	3.70E-02	1,77E-02	8.35E-03	3.00E-02	Yes	Yes	No	中的特殊的政治的	Pitratio et	拔肉体的角
Chlorobenzene	mg/kg	8:9:9	1.20E+00	1.20E+00	3.38E-01	1.00E+00	Yes	Yes	No	TOTAL PROPERTY AT		
Chromium	mg/kg	9:9:9	5.50E+01	2.59E+01	1.85E+01	3.20E+01	Yes	Yes	No	THE WASHINGTON		
Heptachlor epoxide	mg/kg	3:9:9	8.60E-01	8.60E-01	1.08E-01	7.00E-01	Yes	Yes	No	CARL CHARLE		
Nickel	mg/kg	9:9:9	1.50E+03	1,26E+03	4.80E+02	7.00E+02	Yes	Yes	No	阿里斯· 文明即沙斯林		
Pentachlorophenol	mg/kg		2.90E-01	1.90E-01	6.37E-02	2.00E-02	Yes	Yes	Yes	1.33E-02	Yes	Yes
Notes:		.,,,,										

Notes:

FOD - Frequency of Detection.

RO - Remediation Objective.

TACO - Tiered Approach to Corrective Action Objectives.

Table G-4
Field TOC and foc Data - Average foc Values for Each Creek Segment
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Sample ID	TOC (mg/kg)	foc
000 000 74 04	CS-B	
CBS-CSB-T0-C1	63000	0.063
CBS-CSB-T1-C1	16000	0.016
CBS-CSB-T1-E1	13000	0.013
CBS-CSB-T1-W1	10000	0.01
CBS-CSB-T10-C1	17000	0.017
CBS-CSB-T10-E1	14000	0.014
CBS-CSB-T10-W1	9400	0.0094
CBS-CSB-T11-C1	17000	0.017
CBS-CSB-T11-C1-D	18000	0.018
CBS-CSB-T11-E1	12000	0.012
CBS-CSB-T11-W1	7600	0.0076
CBS-CSB-T12-C1	17000	0.017
CBS-CSB-T12-E1	9400	0.0094
CBS-CSB-T12-W1	11000	0.011
CBS-CSB-T13-C1	17000	0.017
CBS-CSB-T13-E1	9400	0.0094
CBS-CSB-T13-W1	8500	0.0085
CBS-CSB-T14-1	11000	0.011
CBS-CSB-T15-1	8800	0.0088
CBS-CSB-T16-1	14000	0.014
CBS-CSB-T17-C1	27000	0.027
CBS-CSB-T17-E1	28000	0.028
CBS-CSB-T17-E1D	18000	0.018
CBS-CSB-T17-WI	21000	0.021
CBS-CSB-T18-C1	17000	0.017
CBS-CSB-T18-E1	8500	0.0085
CBS-CSB-T18-W1	13000	0.013
CBS-CSB-T18-W1D	13000	0.013
CBS-CSB-T2-C1	16000	0.016
CBS-CSB-T2-E1	16000	0.016
CBS-CSB-T2-W1	7300	0.0073
CBS-CSB-T3-C1	23000	0.023
CBS-CSB-T3-E1	20000	0.02
CBS-CSB-T3-W1	6800	0.0068
CBS-CSB-T4-C1	21000	0.021
CBS-CSB-T4-E1	13000	0.013
CBS-CSB-T4-W1	8000	0.008
CBS-CSB-T5-C1	17000	0.017
CBS-CSB-T5-E1	9400	0.0094
CBS-CSB-T5-W1	8100	0.0081
CBS-CSB-T6-C1	17000	0.017
CBS-CSB-T6-C1-D	18000	0.018
CBS-CSB-T6-E1	12000	0.012
CBS-CSB-T6-W1	15000	0.015
CBS-CSB-T7-C1	10000	0.01
CBS-CSB-T7-E1	14000	0.014
CBS-CSB-T7-W1	6600	0.0066
CBS-CSB-T8-C1	4100	0.0001
CBS-CSB-T8-E1	16000	0.004
CBS-CSB-T8-W1	· -	
	8800	0.0088
CBS-CSB-T9-C1	14000	0.014
CBS-CSB-T9-E1	11000	0.011
CBS-CSB-T9-W1 Average for CS-B	8300	0.0083 0.0145

Table G-4
Field TOC and foc Data - Average foc Values for Each Creek Segment
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Sample ID	TOC (mg/kg)	foc
***	CS-C	
CBS-CSC-T1-1	12000	0.012
CBS-CSC-T2-1	14000	0.014
CBS-CSC-T3-1	24000	0.024
CBS-CSC-T4-1	15000	0.015
CBS-CSC-T4-1-FD	16000	0.015
CBS-CSC-T5-1	18000	0.018
CBS-CSC-T6-1	33000	0.033
CBS-CSC-T7-1	15000	0.035
CBS-CSC-T8-1	23000	0.023
CBS-CSC-T9-1	15000	0.025
Average for CS-C		0.0185
Tiverage for Co C	CS-D	0.0700
CBS-CSD-T1-1	16000	0.016
CBS-CSD-T2-1	20000	0.02
CBS-CSD-T2-1	13000	0.013
CBS-CSD-T4-1	19000	0.019
CBS-CSD-T4-1	11000	0.013
CBS-CSD-T6-1	29000	0.029
Average for CS-D	23000	0.0180
Average in: ee 2	CS-E	0.0100
CBS-CSE-T1-1	12000	0.012
CBS-CSE-T10-1	16000	0.012
CBS-CSE-T11-1	15000	0.015
CBS-CSE-T12-1	12000	0.012
CBS-CSE-T13-2	23000	0.023
CBS-CSE-T14-1	13000	0.013
CBS-CSE-T15-1	6900	0.0069
CBS-CSE-T15-1-FD	6900	0.0069
CBS-CSE-T16-1	50000	0.05
CBS-CSE-T17-1	23000	0.023
CBS-CSE-T2-1	9400	0.0094
CBS-CSE-T3-1	18000	0.018
CBS-CSE-T3-1-FD	13000	0.013
CBS-CSE-T4-1	17000	0.017
CBS-CSE-T5-1	9600	0.0096
CBS-CSE-T6-1	24000	0.024
CBS-CSE-T7-1	17000	0.017
CBS-CSE-T8-1	15000	0.015
CBS-CSE-T9-1	15000	0.015
Average for CS-E		0.0166

Table G-4
Field TOC and foc Data - Average foc Values for Each Creek Segment
Sauget Area 1 - Creek Bottom Soils
Human Health Risk Assessment

Sample ID	TOC (ma/ka)	foc
Sample ID	TOC (mg/kg)	100
1	S-F	0.0070
CBS-CSF-T1-1	7900	0.0079
CBS-CSF-T10-1	3100	0.0031
CBS-CSF-T11-1	5200	0.0052
CBS-CSF-T12-1	2900	0.0029
CBS-CSF-T13-1	7500	0.0075
CBS-CSF-T14-1	12000	0.012
CBS-CSF-T15-1	5300	0.0053
CBS-CSF-T15-1-FD	1700	0.0017
CBS-CSF-T16-1	7800	0.0078
CBS-CSF-T2-1	15000	0.015
CBS-CSF-T3-1	28000	0.028
CBS-CSF-T4-1	8800	0.0088
CBS-CSF-T5-1	11000	0.011
CBS-CSF-T6-1	11000	0.011
CBS-CSF-T6-1-FD	10000	0.01
CBS-CSF-T7-1	6300	0.0063
CBS-CSF-T8-1	6600	0.0066
CBS-CSF-T9-1	8500	0.0085
CBS-CSF-T9-1-FD	3700	0.0037
Average for CS-F		0.0085
sr	TE M	
SED-M-S10 0-6	46000	0.046
SED-M-S2 0-6	6000	0.006
SED-M-S3-(0-6)	13000	0.013
SED-M-S4-(0-6)	32000	0.032
SED-M-S5 0-6	8700	0.0087
SED-M-S6-(0-6)	6100	0.0061
SED-M-S7-(0-6)	29000	0.029
SED-M-S7-FD(0-6)	28000	0.028
SED-M-S8 0-6	14000	0.014
SED-M-S9-(0-6)	11000	0.011
Average for Site M		0.0194

Well (a)	Constituent (b)	Detected Concentration (ug/L)	TACO Class I Groundwater Criteria (ug/L)	Is Detected Concentration Less than Class I Groundwater Criteria?
AA-SW-S1	None detected			None detected
AA-SW-S2	None detected	••		None detected
AA-SW-S3	None detected	**		None detected
AA-GHL-S2	None detected	**		None detected
AA-GHL-S3	None detected	••		None detected
EEG-104	Dieldrin	0.0026	0.02	Yes
EEG-103	None detected			None detected
EEG-105	Pentachlorophenol	0.097	1	Yes
EEG-111	Pentachlorophenol	0.13	11	Yes
SGW-S1	Dieldrin	0.0032	0.02	Yes
DW-MCDO	None detected			None detected
DW-SCHM	None detected	••		None detected
DW-SETT	None detected	<u>.</u>	<u></u>	None detected
DW-WRIG	Cadmium	1	5	Yes
SGW-2	None detected		<u></u>	None detected

Notes:

⁽a) - Wells identified as those downgradient of CS-B that are not directly located within Site G (see Figure 3-2 of ENSR, 2001, Attachment B of this Appendix).

⁽b) - Data are presented only for constituents exceeding the Tier 2 evaluation as identified in Table G-3 (1,1,2,2-tetrachloroethane, cadmium, dieldrin, nitrobenzene, and pentachlorophenol).

If constituent is not listed, it was not detected in the well.

TABLE G-6
Comparison of Concentration of Constituents listed in Table G-2 to CS-B Concentrations
Sauget Area 1- Creek Bottom Soils
Human Health Risk Assessment

Constituent	Concentration (mg/kg)	CS-B	CS-C	CS-D	CS-E	CS-F	Site M	Notes	
Chromium	Maximum	180	110	57	170	29	55		
	EPC	90	58	57	73	19	26	All concentrations less than in CS-B.	
	Arithmetic Mean	51	36	49	47	17	19		
delta-BHC	Maximum	0.0041	0.0010	0.0019					
	EPC	0.0006	0.0010	0.0019	<sgw< td=""><td><sgw< td=""><td><sgw< td=""><td>All concentrations less than in CS-B.</td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td><sgw< td=""><td>All concentrations less than in CS-B.</td></sgw<></td></sgw<>	<sgw< td=""><td>All concentrations less than in CS-B.</td></sgw<>	All concentrations less than in CS-B.	
	Arithmetic Mean	0.0005	0.0007	0.0008					
Dieldrin	Maximum	0.049	0.0110	0.69	0.034	0.0082			
	EPC	0.0089	0.0110	0.69	0.0226	0.0023	<sgw< td=""><td>CS-D>CS-B. Not industry-related.</td></sgw<>	CS-D>CS-B. Not industry-related.	
	Arithmetic Mean	0.0077	0.0048	0.124	0.0055	0.0037			
Nickel	Maximum	630	570	530	600	630	1500	All concentration less than in CS-B. Site M is	
	EPC	228	357	530	267	330	1261	upgradient of EEG-105, AA-SW-S2, and AA-	
	Arithmetic Mean	192	263	287	181	167	480	SW-S3.	
Zinc	Maximum	10450	3400	8200	5900	15000	12000	Maximum in CS-F is greater than CS-B, but	
	EPC	6163	2776	8200	3115	5373	44504	EPC and Arithmetic Mean are about equal to	
	Arithmetic Mean	2161	2137	4100	1924	2238	3089	CS-B.	
alpha-BHC	Maximum	0.0029			0.0013		0.0023		
	EPC	0.0007	<sgw< td=""><td><sgw< td=""><td>0.0005</td><td><sgw< td=""><td>0.0023</td><td>All concentrations less than in CS-B.</td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td>0.0005</td><td><sgw< td=""><td>0.0023</td><td>All concentrations less than in CS-B.</td></sgw<></td></sgw<>	0.0005	<sgw< td=""><td>0.0023</td><td>All concentrations less than in CS-B.</td></sgw<>	0.0023	All concentrations less than in CS-B.	
	Arithmetic Mean	0.0006			0.0004		0.0015		
Pentachlorophenol	Maximum	44	0.014	0.013	0.0330	0.0240	0.29		
	EPC	0.26	0.014	0.013	0.0207	0.0117	0.19	All concentrations less than in CS-B.	
	Arithmetic Mean	0.99	0.0061	0.0069	0.0113	0.0091	0.064		
Silver	Maximum	9		1.5	9.8	0.79	5.6		
	EPC	0.8	<sgw< td=""><td>1.5</td><td>1.38</td><td>0.69</td><td>4.61</td><td>Concentrations are close. CS-E FOD=3:17, CS-B FOD=10:49</td></sgw<>	1.5	1.38	0.69	4.61	Concentrations are close. CS-E FOD=3:17, CS-B FOD=10:49	
	Arithmetic Mean	0.8		0.825	1.2	0.665	1.67		
beta-BHC	Maximum	0.0077				0.0039			
	EPC	0.0015	<sgw< td=""><td><sgw< td=""><td><sgw< td=""><td>0.0011</td><td><sgw< td=""><td>All concentrations less than in CS-B. FOD = 1:16</td></sgw<></td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td><sgw< td=""><td>0.0011</td><td><sgw< td=""><td>All concentrations less than in CS-B. FOD = 1:16</td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td>0.0011</td><td><sgw< td=""><td>All concentrations less than in CS-B. FOD = 1:16</td></sgw<></td></sgw<>	0.0011	<sgw< td=""><td>All concentrations less than in CS-B. FOD = 1:16</td></sgw<>	All concentrations less than in CS-B. FOD = 1:16	
	Arithmetic Mean	0.0013				0.0008			

otrations

Comparison of Concentration of Constituents listed in Table G-2 to CS-B Concentrations Sauget Area 1- Creek Bottom Solls

Human Health Risk Assessment

Constituent	Concentration (mg/kg)	CS-B	CS-C	CS-D	CS-E	CS-F	Site M	Notes
1,1,2,2-TCA	Maximum					0.01		
	EPC	<sgw< td=""><td><sgw< td=""><td><sgw< td=""><td><sgw< td=""><td>0.0044</td><td><sgw< td=""><td>FOD = 1:16, one detect in whole creek.</td></sgw<></td></sgw<></td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td><sgw< td=""><td><sgw< td=""><td>0.0044</td><td><sgw< td=""><td>FOD = 1:16, one detect in whole creek.</td></sgw<></td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td><sgw< td=""><td>0.0044</td><td><sgw< td=""><td>FOD = 1:16, one detect in whole creek.</td></sgw<></td></sgw<></td></sgw<>	<sgw< td=""><td>0.0044</td><td><sgw< td=""><td>FOD = 1:16, one detect in whole creek.</td></sgw<></td></sgw<>	0.0044	<sgw< td=""><td>FOD = 1:16, one detect in whole creek.</td></sgw<>	FOD = 1:16, one detect in whole creek.
	Arithmetic Mean					0.0039	 	
Cadmium	Maximum	54	24	40	38	57	17	
	EPC	26	17.4	40	23.07	28	13.4	All concentrations less than in CS-B.
	Arithmetic Mean	8.2	13.3	19.75	14.2	20.3	4.92	

ATTACHMENT A

Calculation of Dilution Factor

A. Calculation of the Dilution Factor (DF)

DF = 14	L/ *I*A
UF = 14	- N I U
	1.1
	, -

(hydraulic conductivity 0.16 cm/s 138 meters/day hydraulic gradient 0.001 0.001
i mixing zone depth 98 ft 29.87 meters infiltration rate 0.3 m/yr 0.3 m/yr source length (stream width)

"Dead Creek Final Remedy Engineering Evaluation/Feasibility Study Volume I, June 21, 2002." Default TACO value

Segment	L (meters) ¹	DF
8	15	1.92
С	13	2.06
D	14	1.98
ε	12	2.15
F	5	3.75
M	96	1.14

 Stream width was averaged over stream length.
 Dead Creek Final Remedy Creek Bottom Soll Engineering Evaulation/Coat Analysis Volume II, June 21, 2002*

B. Summary Table of Input Parameters

	Gwobj [®] CLASS I (mg/L)	Koc³	Kd ⁴
1,1,2,2-tetrachiorathene	0.000055	524	
alpha-BHC	0.00003	1230	
beta-BHC	0.00003	2300	
cadmium	0.005		390
chromium	0.1		4778
detta-BHC	0.00003	1900	
dieldrin	0.00002	21400	
nickel	0,1		2333
nitrobenzene	0.0035	64.6	
pentachlorophenol	0.001	592	
zinc	5		1731

² - TACO regulations, Appendix B Table E, except for 1,1,2,2-tetrachloroethane, which is from Region IX PRGs. GWobj for beta-BHC and delta-BHC, assumed to be equal to alpha-BHC, as given in TACO guidance. GWobj for Chromium is for total Chromium, as given in TACO guidance.

³ - TACO regulations, Appendix C Table E, except for beta-BHC and delta-BHC, which are not reported in the TACO regulations and so, were taken from the PA Act 2 guidance.

^{4 -} From Sauve, Hendershot, and Allen. 2000.

C. Input values for Taco Equation

Remediation Objective (mg/kg) = $C_w^*(K_d + ((\Theta_w + \Theta_a^*H')/\rho_b))$ For $\Theta_a = 0$, Remediation Objective (mg/kg) = $C_w^*(K_d + (\Theta_w/\rho_b))$

 $\begin{array}{lll} \textbf{C}_{w\, =} & \textbf{DF^\circ GWobj} \\ \boldsymbol{\Theta}_a = & 0 \text{ air filted porosity for sand, assumed saturated.} \\ \boldsymbol{\Theta}_w = & 0.32 \text{ water filted soil porosity.} \\ \boldsymbol{\rho}_{b\, o} & 1.8 \text{ dry soil bulk density for sand, TACO default for sand.} \\ \textbf{K}_{d\, w} & \textbf{Koc $^\circ$ foc For organics, fixed value for inorganics.} \end{array}$

Segment	foc ^e
В	0.0145
c l	0.0185
D	0.0180
E	0.0166
F	0.0085
м [0.0194

foc was calculated from TOC field data.
foc was averaged over each stream segment.

Cw (segment F)= 0.0002 =DF segment F*Gwobj for chemical 1.8 dry soil bulk density for sand ρ. -K. Koc*foc soil water partition coefficient Koc = 524 organic partition coefficient for chemical Segment foc Kd 0.0085 4.476 θ. -0.32 Maximum Arithmetic Revised TACO Standard Detect pass? Mean pass? Segment F 0.000959 1.00E-02 0.0039 no

alpha-BHC

Cw (segment B)= 0.0001 =DF segment B*Gwobj for chemical
Cw (segment M)= 0.0000 =DF segment M*Gwobj for chemical

 ρ_b
 1.8 dry soil bulk density for sand

 K_d
 Koc*foc soil water partition coefficient

 Koc =
 2300 organic partition coefficient for chemical

 Segment
 foc
 Kd

 B
 0.0145
 33.372

 M
 0.0194
 44.574

⊕_w = 0.20 water filled soil porosity

Maximum Arithmetic Revised TACO Standard Detect pass? Mean pass? Segment B 0.002 2.90E-03 no 5.85E-04 Segment M 0.002 2.30E-03 no 1.48E-03 yes

Cw (segment B)= 0.0001 =DF segment B'Gwobj for chemical
Cw (segment F)= 0.0001 =DF segment F'Gwobj for chemical

ρ_b 1.6 dry soil bulk density for sand
 K_d Koc⁴foc soil water partition coefficient
 Koc ≈ 2300 organic partition coefficient for chemical

 Segment
 foc
 Kd

 B
 0.0145
 33.372

 F
 0.0085
 19.647

Θ_w = 0.20 water filled soll porosity

Maximum Arithmetic Revised TACO Standard Detect pass? Mean pass? Segment B 0.0019 0.0077 1.25E-03 no yes 0.0022 8.21E-04 Segment F 0.0039 yes no

cadmium

Cw (segment B)=	0.0096 =DF segment B*Gwobj for chemical
Cw (segment C)=	0.0103 =DF segment C*Gwobj for chemical
Cw (segment D)=	0.0099 *DF segment D*Gwobj for chemical
Cw (segment E)=	0.0107 =DF segment E*Gwobj for chemical
Cw (segment F)=	0.0187 =DF segment F*Gwobj for chemical

Pb = 1.8 dry soil bulk density for sand K_{d =} Koc*toc soil water partition coefficient

390

Θ_w = 0.32 water filled soft porosity

		Maximum		Arithmetic	
Revised 1	ACO Standard	Detect	pass?	Mean	pass?
Segment B	3.74	54	no	8.25	no
Segment C	4.01	24	no	13.28	по
Segment D	3.87	40	no	19.75	no
Segment E	4.18	38	no	14.21	no
Segment F	7.31	57	no	20.31	no

Cw (segment B)=	0.1916 =DF segment B*Gwobj for chemical
Cw (segment D)=	0.1981 =DF segment D*Gwobj for chemical
Cw (segment E)=	0.2145 =DF segment E*Gwobj for chemical

ρ_b» 1.8 dry solf bulk density for sand K_d» Koc*foc solf water partition coefficient

KJ. 4778

Θ_ω = 0.32 water filled soil porosity

		Arithmetic			
Revised	TACO Standard	Detect	pass?	Mean	passi
Segment B	915.52	180	yes	51.30	yes
Segment D	946.78	57	yes	49.30	Ves
Segment E	1024.94	170	yes	47.30	Yes

detta-BHC

0.0001	=DF segment B*Gwobj for chemical
0.0001	=DF segment C*Gwobj for chemical
0.0001	=DF segment D*Gwobj for chemical
1,8	dry soll bulk density for sand
Koc*foc	soll water partition coefficient
1900	organic partition coefficient for chemical
foc	Kd
0.0145	27.568
0.0185	35.150
0.0180	34.200
0.32	
	0.0001 0.0001 1.8 Koc*foc 1900 foc 0.0145 0.0185

		Maximum					
Revised TACO Standard Segment B 0.001595		Detect	pass?	Mean	pass?		
Segment B	0.001595	0.0041	no	0.0005	yes		
Segment C	0.002180	9.90E-04	V88	0.0007	yes		
Segment D	0.002044	1.90E-03	yes	0.0008	yes		

Cw (segment B)≃	0.000038 ~DF segment B*Gwobj for chemical
Cw (segment C)=	0.000041 =DF segment C*Gwob for chemical
Cw (segment D)≈	0.000040 =DF segment D'Gwobj for chemical
Cw (segment E)=	0.000043 aDF segment E*Gwobj for chemical

1.6 dry soil bulk density for sand ρ.. Κ.. Koc = Koc*foc soll water partition coefficient

21400 organic partition coefficient for chemical

Segment	foc	Kd
В	0.0085	182.801
С	0.0185	395.900
D	0.0180	385.200
Ē	0.0166	355.891

0.32 water filled soil porosity θ,, •

	Maximum		Antrimetic		
CO Standard	Detect	pass?	•	Mean	pass
0.01	0.049	no		0.00772	no
0.02	0.011	y0 8		0.00478	yes
0.015	0.69	no		0,1274	no
0.02	0.034	no		0.00549	yes
	0.02 0.015	0.01 0.049 0.02 0.011 0.015 0.69	CO Standard Delect pass? 0.01 0.049 no 0.02 0.011 yes 0.015 0.69 no	CO Standard Detect pass? 0.01 0.049 no 0.02 0.011 yes 0.015 0.69 no	CO Standard Detect pass? Mean 0.01 0.049 no 0.00772 0.02 0.011 yes 0.00476 0.015 0.69 no 0.1274

nickel

Cw (segment B)=	0.1916 =DF segment B*Gwobi for chemical
Cw (segment C)=	0.2057 =DF segment C*Gwobl for chemical
Cw (segment D)=	0.1981 =DF segment D*Gwobi for chemical
Cw (segment E)=	0.2145 =DF segment E*Gwobj for chemical
ρ	1.8 dry soil bulk density for sand
K ₄ .	Koc*foc soft water partition coefficient
Ka.	2333
θ =	0.32 water filled soft porosity

Revised	TACO Standard	Maximum Detect	pass?	Arithmetic Mean	pass?
Segment B	447.05	630	no	192	V08
Segment C	479.93	570	no	263	V08
Segment D	462.31	530	no	287	ves
Segment E	500.48	600	no	181	Ves

Cw (segment B)=

0.0067 =DF segment F*Gwob) for chemical

ρ.. Κ.,

1.8 dry soff bulk density for sand Koc*foc soll water partition coefficient

Koc =

64.6 organic partition coefficient for chemical

Segment

foc 0.0145

Kd 0.937

θ. =

0.32

Segment B

Revised TACO Standard 0.007478 Maximum Detect 0.52

pass? no

Arithmetic

Mean pass? 0.1266 no

pentachiorophenoi

Cw (segment B)= 0.0018 =DF segment B*Gwob) for chemical Cw (segment M)= 0.0011 =DF segment M*Gwob) for chemical

 $\rho_{b\, *}$ 1.8 dry soff bulk density for sand $K_{d\, *}$ Koc"foc soff water partition coefficient

Koc = 592 organic partition coefficient for chemical

 Segment
 foc
 Kd

 B
 0.0145
 8.590

 M
 0.0194
 11.473

9,, = 0.32

Maximum Arithmetic Revised TACO Standard Detect pass? Mean pass? Segment B 0.016799 44 no 0.9874 no 0.013318 Segment M 0.29 no 0.0637 no

ATTACHMENT B

Figure 3-2 from ENSR, 2001

LEGEND

Groundwater Sample Locations

FIGURE 3-2

Groundwater Well Locations Evaluated in the HHRA

Sauget Area 1
EE/CA and RI/FS
Volume II
Human Health Risk Assessment

Solutia, Inc. Remediation Technology Group St. Louis, Missouri

2000 0 2000 Feet

ATTACHMENT C

Comparison of Groundwater Data from Downgradient Wells to TACO Class I
Groundwater Standards for Constituents Exceeding Tier 2 Class I Soil-to-Groundwater
Remediation Objectives

ATTACHMENT C

Comparison of Groundwater Data to TACO Tier I Screening Criteria for Class I Groundwater for Constituents Exceeding Tier 1 Class I Soil-to-Groundwater Standards Sauget Area 1 - Creek Bottom Soils

Human Health Risk Assessment

	TACO Class I Groundwater	Ц	Downgradient Wells													
j	Standard	AA-GHL-82	AA-GHL-83	AA-SW-S1	AA-SW-S2	AA-SW-S3	EEG-103	EEG-104	EEG-105	EEG-111	SGW-81	DW-MCDO	DW-SCHM	DW-SETT	DW-WRIG	SGW-2
Constituent	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(vg/L)	(ug/L)	(ug/L)
Cadmium	5	ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND _	ND	ND	1	ND
Dieldrin	0.02	ND	ND	ND	ND	ND	ND	0.0026	ND	ND	0.0032	ND	ND	ND	ND	ND
Nitrobenzene	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1	ND	ND	ND	ND	ND	ND	ND	0.097	0.13	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.055 (a)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

TACO - Illinois Tiered Approach to Corrective Action.

(a) - No TACO value, and no appropriate structural surrogate. Therefore, Region IX Preliminary

Remediation Goal (PRG), October 1, 1999, used.

CREEK SEG

ER DESIGN

CONCEPTUAL DESIGN PLANS FOR DEAD CREEK SEGMENT B LINER

CAHOKIA, ILLINOIS

SITE LOCATION MAP

ANG NUI 1

SEAL DETAIL

2003637.00000

APPENDIX D STORMWATER MAPING SYSTEM

100090

Office of the

of the Mayor from others

August 08. 2002

Ms. Robin Prokop, Plant Manager Solutia, Inc. W. G. Krummrich Plant 500 Monsanto Avenue Sauget, Illinois 62206-1198

Dear Ms. Prokop:

Please be advised the Village Board of Trustees at their regular meeting of August 07, 2002 approved the Agreement between Solutia, Inc. W. G. Krummich Plant and the Village of Cahokia for Solutia, Inc. to install pumps and associated piping on Dead Creek between Queeny Avenue and Edgar Street and after the installation of the pumping system the Village of Cahokia will assume responsibility for operating, inspecting. repairing, and maintaining the pumping system except as otherwise provided within he agreement.

Sincerely,

Denita Reed

Mayor of Cahokia

Mayor Denita Reed Village of Cahokia Solutia Inc.
W.G. Krummrich Plant
500 Monsanto Avenue
Sauget, Illinois 62206-1198
Tel 618-271-5835

RE: Letter of Agreement Between Solutia Inc. W.G. Krummrich Plant and the Village of Cahokia

Dear Mayor Reed:

This Letter Agreement formalizes the agreement reached by Solutia Inc. ("Solutia") and the Village of Cahokia ("Cahokia") regarding the installation, maintenance, repair and operation of the pumping system to be installed in Dead Creek. The pumping system will consist of five submersible pumps and associated piping to be installed in Dead Creek at the following locations (also shown on the attached map): (1) the earthen berm that covers gas lines midway between Judith Lane and Cahokia Street, (2) the Cahokia Street culvert, (3) the Kinder Street culvert, (4) the Jerome Avenue culvert, and (5) the Edgar Street culvert.

Solutia and Cahokia agree to the following:

- Solutia will install the above-described pumps and associated piping. When operational, the pumping system will move water downstream from one section of Dead Creek to the next and will reduce the amount of standing water in Dead Creek between Queeny Avenue and Edgar Street. Some amount of standing water will remain in each Creek section.
- After the installation of the pumping system, and except as otherwise provided herein, Cahokia will assume responsibility for operating, inspecting, repairing, and maintaining the pumping system.
- Solutia agrees to furnish a spare pump to Cahokia for use in the event of a pump failure.
- For a period not to exceed five (5) years from the date of this Letter Agreement, Solutia agrees to repair or replace malfunctioning pumps at its cost. Cahokia agrees to notify Solutia within twenty-four (24) hours of its discovery of a malfunctioning pump. Such pumps will be removed by Cahokia and kept at the Cahokia Maintenance Facility for pick-up by Solutia. Solutia will return the repaired or replacement pump to the Cahokia Maintenance Facility, and Cahokia will be responsible for replacing the pump.
- After the five (5) year period has elapsed, Cahokia will be responsible for the repair and replacement of pumps and all costs associated therewith.
- Cahokia shall pay all costs associated with the operation, inspection, repair, and maintenance of the pumping system, with the exception of the above-described pump repair or

Mayor Denita Reed July 30, 2002 Page 2

replacement costs to be assumed by Solutia for a period not to exceed five (5) years from the date of this Letter Agreement.

- As the operator of the pumping system, Cahokia shall comply with all local, State and federal laws related to the operation of the pumping system, including, but not limited to, all applicable permitting or licensing requirements and environmental regulations.
- By entering into this Letter Agreement, Solutia assumes no responsibility for the daily operation of the pumping system or any costs associated therewith.
- In consideration for Solutia's agreement to install the pumping system, Cahokia agrees to release, indemnify and hold Solutia harmless for all claims, demands, liability and damages associated with the pumping system. This obligation shall survive termination of the Letter Agreement.
- This Letter Agreement shall terminate five (5) years from the date of execution by Solutia and Cahokia.

This Letter Agreement sets forth the entire agreement between Solutia and Cahokia with respect to the subject matter hereof. All prior negotiations and dealings regarding this Letter Agreement and the subject matter hereof shall be deemed superseded by and merged into this Letter Agreement.

IN WITNESS WHEREOF, the following parties have reviewed and agree to the above terms and conditions of this Letter Agreement.

SOLUTIA

Robin Prokop Plant Manager

W.G. Krummrich Plant

VILLAGE OF CAHOKIA

Mayor Denita Reed

Village of Cahokia